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ABSTPACT

An autopilot for the U.S. Marine Corps' ducted fan hovercraft is designed using

optimal control theory. Single input controllers are designed to govern the vehicle's

roU rate and altitude rate. The gyroscopic coupling between the vehicle's pitch and

yaw dynamics is examined and a multi-input controller is designed. A cqmputer

program called OPTCON is developed to generate optimal feedback control gains by

solving the discrete matrix Riccati equation. This program is for use on pertable or

home IBM compatible computers. Graphic plotting of the time-varying gains and of

the system time response is available for both monitor and hardcopy output.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the cine available, to ensure that the programs are free of computational and

logic et'.ors, they cannot be considered validated. Any application of these programs

%ithout additional verification is at the risk of the user.
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I. INTRODUCTION

A. THE CONTROL SYSTEM DESIGN PROCESS
Since the beginning of time, man has sought ways to control the laws of nature.

From the simple float regulator developed by the Greeks in 300 B.C. [Ref. 1: p 3], to
the amazingly complex space shuttle of the 1980's, control systems span the range of

_mankind's efforts to govern his surroundings. The challenge for a control systems
engineer is to use his knowledge, skill, judgment, and experience to systematically
develop a solution to any of a number of different types of control problems. There is

seldom only one right answer to a control problem. In general, there may be several
alternate solutions to the same problem and the final product will probably be a
compromise between them. It remains the responsibility of the engineer to choose the
"best" solution that meets the performance criteria specified by the user. So, how does
the engineer know where to begin when he is given a set of performance criteria for a
system ? There is no set procedure carved in stone. There are, however, a few broad
guidelines that give the engineer a rough idea of the tasks which need to be
accomplished in his quest to design an effective control system. These milestones are

as follows :
1. Define the system.
2. Specify the desired performance of the system.
3. Identify the constraints under which the system must operate.
4. Translate the information from milestones 1, 2, arid 3 into a mathematical

model that can be simulated on the computer..
5. Use the available tools to develop a control system which satisfies the

performance specifications.
6. Evaluate the control system design using computer simulations.
7. Modify the design as required to better suit the application.
8. Incorporate the control design in a prototype system to test the ability of the

system to tolerate real world non-linearities and non-ideal conditions.
9. Modify and optimize the design until a satisfactory control system is realized.

The first milestone listed above is not always as simple as it appears to be. In
fact, defining the limits of the system may possibly be the most difficult phase of the

design. If the engineer does not expend considerable effort in the definition of the
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problem which he is to solve, he might end up solving the wrong problem. The

engineer needs to include enough parameters in his system to accurately model the true

system without becoming overburdened computationally. This is as much an art as it

is a science. The engineer will probably need to make simplifying assumptions and

approximations which tend to widen the gap between the performance of the model

and the performance of the real world system.

Defining the desired performance of the system may or may not be left to the

discretion of the engineer. If a strict set of specifications is handed to him, then the

engineer has little choice but to satisfy those specifications or be able to defleid his

claim that they can not be satisfied. On the other hand, there may be considerable

leeway for the engineer to make sweeping changes in the control system and still satisfy

the required specifications. Several tools are available to measure the performi,,ice of a

control system. 'The classical design engineer holds fast to such measures as the gain

margin, phase margin, root locations in the S plane or Z plane, and bandwidth. The

advent of optimal control techniques has placed emphasis on the minimization of some

cost function as a means of measuring system performance. All of these techniques

have their place in the realm of control system design and it is the mark of a successful

dersigner that he can incorporate any or all of the tools when the situation dictates.

The third milestone is an important yet often overlooked element of the design

process. Constraints on the system may include any or all of the following:

1. Monetary cost

2. Admissible control inputs

a. Saturation limits

b. Observability of the parameters required for control

3. Physical limitations

a. Size

b. Weight

c. Minimum and / or maximum velocities, accelerations, etc.

d. Initial conditions

e., Final conditions.

f. Sampling rate and processor speed for digitally controlled systems

The mathematical model is the link between the real world system and the design

tools which the engineer has at his disposal. In general, most physical systems which

need to be modelled can be represented by some set of differential equations. The

12



* m J. I

physical laws of nature lend themselves nicely to approximation by linear ordinary

differential equations with constant coefficients. Non-linearities and random processes

are also quite prevalent in many systems and the effects of these phenomenon can

greatly complicate the engineer's effort to model a system. That is why he must have

the expertise and experience to know how to make assumptions and approximations
which simplify the problem at hand to a point where he can use the available design

i0ools.

The next step is to use design tools to develop a control system which satisfies

the desired performance specifications. It is at this point that two schools of tlought

begin to emerge. The classical school of thought focuses on such design tools as the
Root Locus Plot, Nyquist Plot, Bode Diagram, and Function Minimization. The more

daring school of thought centers its attention on the maximum principle of Pontryagin

and the method of dynamic programming developed by Bellman. The advent of digital

computers in the mid 1950's made these more powerful design tools realizable since the

amount of computation required by them was prohibitive if not impossible to do by

hand. In any event, the design engineer has a myriad, of tools from which to choose.

Once the design of the controller is accomplished, the next step is to integrate the

control system with the system model and then simulate the entire system to evaluate

its performance. A very useful method to perform this evaluation is to study the time

response of the output variables of the system. Such parameters as rise time, peak

overshoot, and settling time are typical values to be noted. The digital computer once

again is -& very useful means of obtaining such information rapidly.

Even the best of control designers is not apt to hit a bullseye on his first shot.
Control system design theory does not guarantee success on every try. The method of

trial and error is one with which all control engineers are familiar. Modifications to

the control system are inevitab!,e.

Once the controller design is proven in simulation studies, it is-time to test it out

on a prototype or small scale model of the actual system. This phase of design can

become costly if the designer has not thoroughly tested his controller on the computer

first. in this phase of design, the. non-linearities and random effects which were

ignored or approximated during the modelling phase become significant factors once
again. Conditions which were assumed to be ideal in the model now become non-ideal.

The evaluation process begins all over again as these new disturbances change the

performance of the system.
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The next step is obvious, After evaluation of the controller in a real world

system, the need for further modifications is again probable if not inevitable. Changes

must be made until a satisfactory controller has been designed which meets the desired

specifications.

B. AROD

It is the goal of this thesis to complete the first seven steps of the nine step
design process discussed in the previous section. The system chosen for this endeavor
is an airborne remotely piloted vehicle (RPV) called AROD. The acronym stands for

Airborne Remotely Operated Device. The United States Marine Corps initiated work

on AROD early in 1986 and is attempting to introduce the vehicle into the operational

Fleet Marine Force during fiscal 1987. AROD is a slow, low-flying ducted fan vehicle

powered by a vertically mounted, two cycle, two cylinder gasoline engine which drives

a three-bladed propeller. See Figure 1.1.

The vehicle is 38 inches tall, 32 inches in diameter, and has a nominal weight of
85 pounds. It presently has a payload capacity limited to a miniature television camera
and a canister of fiber-optic cable. The Marine Corps plans to use AROD for short

range reconnaissance and over-the-hiU spy in the sky surveillance. The fiber-optic
cable provides two-way communication between the vehicle and the ground based

operator. The uplink communication will consist of control commands while the

downlink will provide real time surveillance and'on-board status information.

The primary flight mode is low altitude hovering with the axis of the spinning
propeller oriented perpendicular to the surface of the earth. In order to translate

horizontally across the earth's surface, the entire vehicle must be tilted towards the
direction of intended mcvement. The mechanism by which AROD is tilted for such
translation consists of four control vanes located in the airflow downstream of the

propeller wash. One pair of control vanes is designated as the rudder. The other pair
is designated as the elevator and is oriented such that its axis of rotation is
perpendicular to the axis of rotation of the rudder pair. See Figure 1.2. All four fins

assume dual responsibility for aerodynamic control in that they also serve as ailerons

for AROD. The control vanes are actuated by model airplane servos. These servos
are limited to a maximum deflection of :k 30o and a maximum angle rate of 50o/sec.

A maximum translational velocity of 30 knots (34 mph ) in a no wind condition is
desired. The translational velocity of AROD is proportional to the tilt angle created

by the rudder and elevator control vanes.

14
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FIBER OPTIC
CANISTER

Figure 1.1 Schematic Drawing of AROD
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ELEVATOR
RUDDER

Figure 1.2 AROD Control Vanes

Vertical flight control of AROD is accomplished through a throttle controller
which incorporates the same type of model airplane servo used to actuate the

aerodynamic control vanes. The throttle controller increases or decreases the engine

RPM as required to raise or lower AROD vertically.

C. THE PROBLEM

AROD is interesting from the standpoint of a control system design for several

reasons. Most significant is the phenomenon of cross-coupled dynamics between the
pitch and yaw subsystems. In addition, AROD is a Multi-Input Multi-Output system.

These topics are briefly discussed in the following sections.
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1. Gyroscopic Coupling
AROD's propeller has a spin velocity of 7200 RPM in the hovering condition.

This creates a large angular momentum vector along the spin axis of the propeller.

Thus, AROD can be thought of as a large gyroscope with its angular momentum

vector oriented perpendicular to the surfhce of the earth. Consider a cylindrical rotor

XýL

Figure 1.3 Spinning Rotor Orientation

spinning about the x-axis with an angular spin velocity (o. See Figure 1.3.. Let the

rotor be of mass, m, with moments of inertia 1 9, ly , and I about their respective

axes. These moments are defined in the three equations below.

.- J 6J (y, + z2) dV (1.1)

Iy = SJ' 6(x2 + z2) dV (1.2)

l 5f• 6(x 2 + y2) dV (1.3)

17



In these equations, 8 is the density of the rotor and dV is an incremental volume

element of the rotor. In the case of AROD, it is assumed that the propeller is spinning
with sufficient angular velocity that its dynamics can be approximated by the dynamics
of a cylindrical disk having the same mass, m, radius, r, and thickness, h. The

moments of inertia of the propeller then reduce to the following

mr2
SX 2 (1.4)

m(3r 2  h2) (1.5)
y " 12

i.•m(3rl + h2)
Iz m(' 12 (1.6)

Notice that the moments of inertia about the y-axis and z-axis are equal to each other
due to the symmetry of the problem.

The angular velocity, o) , of the rotor induces an angular momentum vector,
HX, defined by the following equation.

HX I1 0 (1.7)

If a coupled pair of forces, F, directed parallel to the z-axis is applied to the the spin
axis of the rotor at a distance, d, from the rotor's center of gravity, as in Figure 1.4,

then a torque, M , results, The torque is given by

M - F x d (1.8)

If the rotor were not spinning with angular velocity, co , then this applied torque would
result in rotation of the rotor about the y-axis. The angular momentum of the

spinning rotor, however, results in quite a different response to the applied torque.
According to Newton's Second Law, an external force applied to the center of gravity

of a rigid body results in a change in the velocity of that body. A corresponding
change in the body's momentum also results. The changes in velocity and momentum

18
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'00

Figure 1.4 Spinning Rotor with a Force Couple Applied

are in the direction of the applied force. This law extends into the realm of angular

forces, or moments, and angular velocities. In short, an applied moment, M , results

in a change in angular momentum.

M M- - M dHX (1.9)
dt dt

Notice that the change in angular momentum is in the same direction as the applied
moment. This is the key to gyroscopic precession. By vector addition of HX and NI ,

it can be secn that a new angular momentum vextor, Hnew , results. The new angular
momentum is displaced by an angle, y, from the initial angular momentum vector, HX.
This angular movement is called precession and it occurs at a precession rate, r,

oriented as shown in Figure 1.5 and defined by Equation 1.10.

19
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H1  M

Figure 1.5 Resultant Angular Momentum With an Applied Torque

d•p
r - (1.10)

dt

It can be shown that Hx, M , and r are always mutually perpendicular to each other

.[Ref. 2: p. 335]. and that these vectors are related by the expression

M- Ix r 'H (1.11)

The handy mnemonic for this relationship is that "spin follows torque". In this
example, the spin vector, H. , that results from the applied torque, M , is rotated in
the direction of the torque. Notice that the magnitude of the precession velocity is
directly proportional to the magnitude of the applied torque.

20



In the case of designing a control sysrem for AROD, the preceding

development is quite important. Recall that the propeller spins ct a no~final velocity

of 7200 RPM. The angular momentum of this high speed rotor has signiricant effect

on the flight dynamics of AROD. In order to change the orientation of this angular

momentum, as is required to accomplish translational flight, a considerable torque

must be applied. This torque is produced by the four contruol vanes located in the

propeller downwash. Note that the gyroscopic nature of AROD introduces cross-

coupling of the pitch and yaw dynamics. For instance, when a pitching torque is

commanded about the y-axis via the elevator vanes, AROD must first undergo an

initial yawing motion about the z-axis. Similarly, a yaw command from'the rudder

vanes results in an initial pitching motion about the y-axis. These cross-coupled

dynamics must be considered by the engineer when designing the controller for the

elevator and rudder vanes.

2. Multiple Control Loops

Another feature which makes AROD interesting for the control engineer is the

Multi-Input Multi-Output (MIMO) nature of its dynamics. There are basically four

subsystems which need to be controlled in order to make AROD fly. These

subsystems are :

1. Roll rate

2. Rate of vertical climb

3. Pitch angle

4. - Yaw angle

Classical design tools such as Root Locus diagrams and Bode plots are not well suited

for MI MO system design. Instead, the usefulness of these methods is primarily limiuted

to Single-Input Single-Output (SISO) systems. These systems are generally represented

in terms of their S domain or Z domain transfer functions. The poles and zeros of these

transfer functions determine how the time response of the system will behave. By using

the graphical and analytic methods available through classical design theory, the

engineer can generally place the poles and zeros of his SISO controller in such

locations as to obtain an acceptable time response for the system. The complex

interactions that typically accompany a MIMO system can become impossible to

represent in terms of standard transfer functions. Thus, classical design methods may

become powerless for some systems. By developing a state space representation of the

system, however, the interactions can be accurately modelled. Optimal control theory
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is founded on the state space representation of control systems and, therefore, it seems
logical to pursue this theory for AROD. The basics of optimal control theory are
presented in the following chapter.
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II. OPTIMAL CONTROL THEORY

A. FEEDBACK CONTROL
1. Why Use Feedback ?

Feedback control is familiar to engineers from all disciplines. In its simplist
form, feedback control is nothing more than using the present condition, or "state", of

a system to influence its condition in the future.
The advantages of state feedback control [Ref. 1: p.97] can be summarized in

four points

1. Assuming that controllability and observability conditions are satisfied, the
transient time response of the system can be easily controlled and adjusted.

2. The sensitivity of the system to plant parameter variation is reduced.

3. Rejection of disturbance and noise signals is improved.

4. Steady state errors may be eliminated or reduced.

These benefits are not free. The penalty for using feedback control may

include disadvantages such as :
I. System complexity increases because additional sensors may be required to

measure the feedback states.
2. Sensors contribute to an increase in:

Z-a Cost

b. Size
c. Weight

d. Measurement noise
3. Closed loop gain is generally lower than open loop gain.

Despite these potential drawbacks, feedback systems are widely used in all engineering

fields.

2. System Classltication
Feedback provides a system with the ability to moniter and alter its

performance. As the process advances in time, the system is apprised of the changes

that occur in its states. This state information may be real time or may be delayed by
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some finite interval of time. In general, systems may, be separated into two categories

according to the nature of the signals they process. These'categories are

1. Continuous time.

2. Discrete time.

An analog electrical circuit is one exampte of the. first type of system. In this
case, the voltage and current signals assume values-over a, continuum vf time. That is,

given any two instants in time,,, the changing vaiues.-of these signals may be distinctly

measured. This is true regardless of.how closely .,hetwo. tihk 'instants occur. Such

systemS' are usually desctibed by.,,,1axseries of difFtreciialAt'quations.- The Laplace

transform is extremely usefuiin aH*ing ftequency'-domain analysis and design of

continuous time systems. ,.

A microprocessor-bsed-,systemn is an, xampbli of the discrete time system. The
clocked signals in thiitYpe of system are represented by a sequence of numbers.

Typically, a sequence oý,'sampled data, resut'srom measuring an analog signal at
specific intervals in tiram The %time!between measurements is referred to as the

sampling interval, or At..:,The samplihg freqn*ncy, f,, is simply the inverse of At. For

an analog systvm withawourier transf•bmtbandlimited to a maximum frequency, fmax'

the Nyquist -'requency,-fis definidiin2Euation 2.1 [Ref. 3: p. 138].

fn - 2rm (2.1)

A general rule of thumb birlthe design engineer [Ref 4: p. 404] is to sample a system

such that

fs lOfn (2.2)

This guideline for selecting a sampling frequency is based on the following

considerations. %'

1. Most systems are not strictly bandlimited. The choice of a sampling frequency
greater than the Nyquist frequency compensates for contamination by higher
frequency disturbances (Ref. 5: p. 30].

2. The sampling frequency should be fast enough to avoid aliasing. This
distortion is generated during the convolution reconstruction of a time signal
from its Fourier transform [Ref. 3: pp. 135-137].
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Discrete time systems are represented by difference equations and the Z-transform is

the mechanism by which these equations are analyzed. More details of the

comparisons between continuous time systems and discrete time systems will arise

during subsequent discussion.

3. System Structure with Feedback

COMM ERROR
INPUT SIGNAL INPUT DYNAMIC OUTPUT

1-AMP OJN#r• t- = SYSTEM

_FEEDBACK_ _

_ GAIN

Figure 2.1 Basic Control System

The basic form for any control system is illustrated in Figure 2.1. It is the

responsibility of the design engineer to determine any or all of the items designated in

this schematic. In this section, emphasis is placed on the feedback gain "black box"

shown in Figure 2.1. The two methods most commonly used in practice to determine

feedback gains are pole placement techniques and optimal control techniques. The

element of trial and error is inherent in both methods.

Pole placement techniques include analytical methods as well as the frequency

domain methods previously mentioned. These methods are bcst suited to low-ordcr,

linear, time-invariant, SISO systems. Although these methods are extremely useful for

certain problems, no detailed explanation of these classical techniques is included in

this thesis.
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Optimal control theory provides an alternative to classical pole placement

techniques. A primary advantage of optimal control methods is that feedback gains

can be computed for a much broader range of control problems. Specifically, optimal

control provides solutions for high order, non-linear, time varying, MIMO systems.

Such systems are intractable with classical methods. In addition, optimal control

affords the designer the option to specify a performance criteria which is not linked to

such standard time domain criteria as rise time, percent overshoot, and settling time.

For instance, using optimal control theory, the design engineer may compute feedback

gains which result in a system that responds in minimum time to a given command

input. Selection of a different performance criteria might result in a system that

responds with minimum energy expendiature, minimum fuel, or minimum deviation from

the reference command. Sound engineering judgement and a thorough understanding

of the system dynamics are prerequisites for effective application of optimal control

theory. No guarantee is made that the feedback gains obtained by optimal control

theory will result in acceptable system response. The designer should evaluate the

system response and modify his performance criteria in order to achieve the desired

output.

B. SYSTEM DEFINITION

I. Continuous Time Systems

The foundation of a successful control system is an accurate model of the

plant which is being controlled. The state space representation of a general nth order

continuous time system is described by the following matrix state equations

x(t) - A(t) x(t) + B(t) u(t) (2.3)

y(t) - C(t) x(t) + D(t) u(t) (2.4)

e(t). - x(t) - r(t) (2.5)

u(t) - F(t) {x(t) - r(t)} (2.6)

where the definitions in Table I apply to a system with t control inputs

and m measurable outputs.
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TABLE I
STATE SPACE DEFINITIONS FOR CONTINUOUS TIME SYSTEMS

Term Dimension Definition

x(t) (n x 1) State vector

u(t) (t X 1) Control input vector (0 < t :5 n)

y(t) (m x 1) Output vector (0 < m n)

r(t) (m x 1) Command input vector
e(t) (m x 1) Error vector

A(t) (n x n) Plant matrix

B(t) (n x t) Control distribution matrix

C(t) (m x n) Output distribution matrix
D(t) (m X) Feedforward control gain matrix

F(t) (t x m) State feedback gain vector

In this thesis, a linear time invariant system will be assumed. This allows the
time dependency of the process matrices, .A(t) and B(t), and the measurement matrices,

C(t) and D(t), to be eliminated. Because optimal control theory requires that all n

states be available for feedback, the output distribution matrix, C, is set equal to the
identity matrix, I. This indicates that m - n and that the state vector is completely

observable. In addition, the feedforward control gain matrix, D, is assumed to be
equal to the zero matrix. These assumptions lead to the following simplified state

equations

x(t) - Ax(t) + B u(t) (2.7)

y(t) - x(t) (2.8)

e(t) - x(t)- r(t) (2.9)

u(t) - F(t) e(t) (2.10)
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"CONTROLLER SYSTEM
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Figure 2.2 Continuous Time System

The realization of such a system is schematically illustrated in Figure 2.2.

2. Discrete Time Systems
Optimal control theory is applicable to the continuous time system presented

in the preceeding section. The remainder of this thesis, however, will focus on the
application of optimal control theory to sampled data systems. The motivation behind
this effort is to develop an interactive, uscr-friendly software package that can be
implemented on a microcomputer. The digital nature of sampled data systems make

'94 them ideal for analysis and design with these high speed computers. The theory for
optimal control of discrete time systems is well developed and closely follows the
development for continuous time systems [Ref. 61.

As was noted earlier, many digital systems are the result of periodic sampling
of analog systems. This fact makes it necessary to mathematically connect the two
types of systems. For an analog signal that is sampled at the frequency, s, a discrete
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signal value is measured every t - kAt seconds. In this notation, k is an integer time

index in the range 0:; k :5 (N-I) where N' represents the last sample period of interest.

Letting the sample period be denoted as

At - 'r (2.11)

and substituting a discrete appioximation for the derivative in Equation 2.7,

S('kT) •-x((k+ I)T)- x(kT) (2.12)
T

yields the discrete state equation

x((k+ I)T) - (1 4- AT)x(kT) + TBu(kT) (2.13)

The analytic solution for the discrete problem is given by:

x(k4+1) - Ox(k) + rFu(k) (2.14)

y(k)- x(k) (2.15)

e(k) - x(k) - r(k) (2.16)

u(k) F(k) e(k) (2.17)

where 0 and r are defined as:

0 - eAT (2.18)

r ITeAtdtB (2.19)

29



The vectors and matrices which describe an nth order discrete time system

with t control inputs and m measured outputs are summarized in Table 2. A graphical

rcalivation of such a system is illustrated in Figure 2.3

TABLE 2

STATE SPACE DEFINITIONS FOR DISCRETE TIME SYSTEMS

"YTerm Dimension Definition

x(k) (n x 1) State vector

u(k) (t X I) Control input vector (0 < t : n)

y(k) (m x I) Output vector (0 < in < n)

r(k) (m x I) Command input vector

e(k) (m x 1) Error vector

0(k) (n x n) State transition matrix

1"(k) (n X C) Discrete Control distribution matrix

C(k) (m x n) Output distribution matrix

D(k) (m x t) Feedforward control gain matrix

F(k) (t x m) State feedback gain vector

The computation of the discrete process matrices, 0 and r, from the

continuous process matrices, A and B, is readily accomplished [Ref. 5: p. 37] on a

digital computer as follows.

Define an auxiliary matrix, rI as

nI- T eAt dt (2.20)
10

AT 2  A2T3  AiT(i + 1)

2! 3! (i+ 1)!

The terms in this Taylor series expansion are computed until the result is within a

specified degree of accuracy. It behooves the programmer to set a very small tolerance
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Figure 2.3 Time Invariant Discrete Time System

on the difference between successive terms in the expansion since this calculation is the

critical link between the A and B matrices of the continuous time system anid

the 0 and r matrices of the discrete time system. Note that this calculation need

only be done once for a given system with a fixed sample interval, Ti The link is

completed by using Equations 2.21 and 2.22.

( - I + An (2.21)

r-=lB (2.22)

The subroutine PHIDEL listed in Appendix C performs the calculations required to

solve Equations 2.20, 2.21, and 2.22. A tolerance of 10"' is used for the allowable

error between the last term used from the Taylor expansion and the first term not used.
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3, Constraints

The system is now defimed in terms of the 0 and r state space matrices. The

next step in the design process is to identify any constraints under which the system

will operate. These constraints are as unique to the problem at hand as is the system

itself. Therefore, no detailed discussion on constraints is appropriate without first

defining a specific problem. This is done in Chapter III.

C. THE PERFORMANCE MEASURE

1.- Quadratic Cost Function

The central theme in discrete optimal control theory is minimization of a cost

function, J, defined in Equation 2.23.

N-I

J - et(N)He(N) + 0[et(k)Qe(k) + ut(k)Ru(k;3 (2.23)
k-0

where
J - Scalqr cost of overatiný the system over

the time interval 0S f (N-1)

e(N) = State vector at the terminal time

e(k) - State vector at intermediate discrete times

u(k) - Control vector at intermediate Ziscrete times

H = Terminal state weighting matrix

Q - State trajectory weighting matrix

R - Scaler control weighting matrix

N - Time index at terminal time

t - Matrix transpose operator

2.- Regulators and Trackers

It is imperative to note here that the error state vector, e(k), in Equation 2.23

may not be the same as the system state vector, x(k), that is presented in the previous

section. The e state vector is usually formulated in one of two ways:

1. If e(k) - x(k), then the problem is a 'regulator' problem. The objective is to
drive the system states to the origin during the time interval (1,N).

2. If e(k) - x(k) - r(k), then the problem is a 'tracking' problem. The objective is
to drive the system states to have minimum deviation from the command input,
r(k), during the time interval (1,N).
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In order to exzend the regulator problem to the tracking problem, the command input

vector, r(k), must contain the same eigenvalues and structure as the x(k) state vector.

It is possible, in many problems, to structure an approximate r(k) vector so that the

use of the regulator solution is allowed. In the case of the regulator, the ,control input

signal is generated as shown in Equation 2.24.

u(k) - F(k),x(k) (2.24)

In the case of the tracking problem, the control signal is generated from the error

signal as shown in Equation 2.25.

u(k) - F(k) {x(k) - r(k)} (2.25)

The comparison between these two types of systems is demonstrated in their block

diagram structures as shown in Figure 2.4.

3. Performance Weighting Factors

The H, Q, and R weighting matrices are the parameters by which the design

engineer shapes the solution of an optimal control problem to best suit the problem.

There -are no magic formulas which instruct the designer on how to choose the values

of these parameters. Intuition, experience, and patience are the keys to successful

design. It is in selecting values for these performance weighting factors that the

process of trial and error enters the design process. There are, however, some
restrictions and general guidelines that partially direct the efforts of a design engineer.

First consider the restrictions. Both of the state weighting matrices, H and Q,

must satisfy all of the criteria below [Ref. 7: p. 753].

1. Dimension is (n x n)

2. Real

3. Symmetric

4. Positive semidefinite

In addition, the designer should never allow both H and Q to be equal to the zero

matrix at the same time. The resulting cost function would be
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Figure 2.4 Comparison Between Regulator and Tracker System Structure
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N-1
J - ut(k)Ru(k) (2.26)

k-0

It is simple to see that the cost function will be minimized by setting u(k) equal to- zero

[Ref. 7: p 755]. This would be disasterous since there would be no command signal

available to drive the system states toward the desired state. It is permissible to set

either H or Q equal to the zero matrix provided that they1 are never both zero

simulta•.eously. The (t x C) control weighting matrix, R, must be positive -definite in

order to assure the existence of a finite control [Ref. 7: p. 754].

Although there is no requirement for H and Q to be diagonal matrices, the

usual practice is to select non-negative values for their diagonal elements and to set al'

off-diagonal elements to zero. This technique eliminates all cross product terms in the

cost function. For example, consider a second order system containing states x, and

x2. If diagonal matrices are selected for H and Q, then only the (x,) 2 and (x2 )2 terms

will be weighted in the cost function. There will be no consideration given to the xix2

or x2 xI cross product terms.

Assuming that neither H nor Q is the zero matrix, it is suggested that the

elements of these weighting matrices be selected so as to normaize the values of the

states which they multiply [Ref. 6: p. 32]. For instance, suppose that x, represents the

RPM of AROD's .propeller and x2 represents the angular displacement in degrees of

the throttle servo. State x, is expected to have a nominal value of 7200 while state x2

may have a nominal value of only 10. Assume that element q%, which multiplies (xI) 2

and element q22 which multiplies (x2 )2 are both set equal to one in an attempt to
weight the two states equally. In terms of the cost function, the RPM will be weighted

much heavier (approximately 7202 times heavier !!) than the throttle servo position

angle. An appropriate solution is to set q1 , - (1/720)2 if q22 - i. Thus, each signal

is given equal consideration in the cost function.

Notice in Equation 2.23 that the terminal cost term is not included inside the

Soperator. This means that the H term is only counted one time and therefore can

contribute only once to the overall cost. The state trajectory term and the control

term, however, are counted N times. If no compensation is made for this disparity, the

cost of an error in the terminal state is likely to not have any impact on the control

solution. It seems that an additional scaiing is required on the weighting elements. If
the summation in Equation 2.23 is to be made over 500 discrete time intervals, for
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instance, the normalized elements of H should be multiplied by 500 in order to weight

the terminal states on the same scale as the state trajectory and control effort terms.

Alternately, the elements of Q and R could be divided by 500. It is the relative

magnitudes, not the absolute magnitudes, of these weighting factors which shape the

control solution.

4. Specific Types of Problems

Optimal control theory can be used to solve any of the following types of

problems:

I. M-inimal time

2. Minimal control effort

a. Minimum fuel

b. Minimum energy

3. Minimal error from a reference

a. Regulator

b. Tracking

c. Terminal state control

Each of these problem types requires minimization of a unique cost function in order

to generate the appropriate control solution [Ref 6: pp. 30-34]. The cost functions

which are to be explored in this thesis are listed in Table 3.

TABLE 3

TYPICAL COST FUNCTIONS

Goal Cost Function Additional Explanation

Regulator J1 - xt(k)Qx(k)

Tracker J2 - et(k)Qe(k) e(k) - x(k) - r(k)

Terminal Control J3 et(N)He(N) e(N) " x(N) - r(N)

Minimum Energy J4 ' ut(k)Ru(k) + J3

Minimum Fuel J5 - u(k) I

All • are performed over the interval 0 : k < (N- i).
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Of course, the cost function in Equation 2.23 is a general form which embodies all of

the specific cost functions (except for minimum fuel) contained in Table 3. Proper

selection of H, Q, and R will allow calculation of feedback control gains which cause

the system to meet the specified performance goal.

D. CALCULATION OF OPTIMAL FEEDBACK GAINS

The method of dynamic programming is the workhorse which permits the
calculation of optimal feedback control gains. Developed in the late 1950's by R.E.

Bellman,, this design tool provides a closed form solution for the minimizationof the

quadratic cost function for a discrete time linear system [Ref. 6: p. 84].

The procedure involved in calculating optimal control gains is unique in that the

computation begins with the final, or Nh, discrete time interval and progresses

backwards in time to the previous interval of the system process. This procedure in
I'negative time' is possible because the calculation of the gains do not require any

information about the state vector, x(k). The sequence of calculations continues in

negative time until a separate gain matrix is determined for every disc-ete sample

period in the time interval (0,N). The resulting time-dependent gain trajectory is

usually stored in memory so that the control signal, u(k), may be computed.

An interesting and very useful property of the gain trajectory is its tendency to

approach a constant valued matrix, F.., under certain conditions [Ref. 4: p. 354]. This

constant miatrix is referred to as the steady state feedback gain matrix. The conditions

necessary for F%5 to exist are :

1. The system is controllable.

2. The 4) and IF Matrices are time invariant.

3. The H terminal state weighting matrix is equal to the zero matrix.

4. The Q trajectory state weighting matrix is constant.

5. The R control weighting ntatrix is constant.

6. The number of stages, N, of the process is large.

It is possible for the feedback gain matrix to approach FU without satisfying the first

three conditions above. When all conditions are satisfied, however, a steady state gain

solution is guaranteed provided that N is large enough. Just how large N must be in

order to allow the gain trajectory to reach steady state is determined by the slowest

time constant in the solution of the discrete matrix Riccati equation [Ref. 5: p. 259]. In

practice, trial and eror is the the most expedient method to determine how large N

must be in order to ensure a steady state gain matrix, F...
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A series of three recursive equations [Ref. 6: p. 83] is used to calculate the gain

trajectory, F(k). It is convenient to introduce a negative time discrete index, K, which

is defined as Follows

K - N-k (2.27)

Since k varies from (0,N-1) as forward time progresses, K varies from (1,N) as negative

time progresses. Equation 2.28 is the solution for the transpose of the optimal

feedback gain vector at each discrete time step. This equation is the solution to the

well known discrete matrix Riccati equation. Equations 2.29 and 2.30 are auxiliary

equations required to complete the calculations. The recursive matrix equations are:

F(K) 0 - (rt P(K-i) r + R}- 1 {rt P(K-I) 4} (2.28)

'P(K) - 0P + r F(K) (2.29)

P(K) - 1I1t(K) P(K-I) 'I'(K) + Q + Ft(K)R F(K) (2.30)

with 'negative time' initial conditions

Ft(O) - 0 (2.31)

,I,(O) - 0 (2.32)

P(0) - H (2.33)

While somewhat difficult at first glance, Equations 2.28, 2.29, and 2.30 are ideal for

iterative solution by a digital computer. These equations are solved in the main

OPTCON program listed in Appendix B. The reader who is not familiar with

OP CON is encouraged to review the discussion of this program in Appendix A prior
to continuing with Chapter 111.
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III. CONTROL SYSTEM DESIGN FOR AROD

A. OVERVIEW
The purpose of this chapter is to use optimal control theory to design an

automatic flight control system for the U.S. Marine Corps' remotely piloted AROD.
In their initial form, the equations of motion which describe AROD's dynamic
behavior are extremely nonlinear and present a formidable challenge to the control
system designer. For this reason, the equations are first linearized about a steady state
hover condition. The restrictions and assumptions under which the linearized
equations of motion are developed are summarized below:

1. The mass of AROD is constant with time [Ref. 8: p. II].
2. The propeller angular velocity is constant.
3. Perturbations from steady state hover are small. This restriction requires that

AROD pitch, roll, and yaw angular displacements be limited to less
than 15o (n/12 - 0.2618 radians) [Ref. 8: p. 411.

4. Steady state pitch and yaw rates are zero.
5. Initial side velocities are zero.
6. Initial bank angles are zero.
7. Initial angular velocities are zero [Ref. 8: p. 451.

In- order to elucidate the equations of motion, Figure 3.1 is provided for
reference. The axis system in Figure 3.1 is known as a body-fixed coordinate system.
The body-fixed axis system is thought of as being rigidly attached to the vehicle so that
any change in the. orientation of AROD with respect to the earth-fixed axis system
(X', Y', Z') results in a corresponding change in the orientation of the body-fixed axis
system (X, Y, Z) with respect to (X', Y', Z'). The angles qp, 0, and y, commonly
known as the Euler angles [Ref. 8: p. 25], are measures of the roll, pitch, and yaw
angles respectively between the body-fixed (X, Y, Z) coordinate system and the earth-
fixed <X, Y', Z') coordinate system. The angular velocities p, q, and r in Figure 3.1
correspond to the roll, pitch, and yaw rates respectively.

The automatic flight control system is logically separated into three subsystems
according to the simplified equations of motion. The three control subsystems which
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Figure 3.1 AROD Body-Fixed Coordinate System

are hereafter designed are

I. Roll rate controller.
2. Altitude rate controller.

3. Pitch angle and yaw angle controller.

Each of these controllers is designed independently from the other subsystems.
Therefore, any cross-coupling which may occur ecross the subsystem boundaries is not
accounted for. Each of the following sections is devoted to the design of a controller

for one specific AROD subsystem. A detailed design is first presented in Section B for
the roll rate controller in order to demonstrate the iterative nature of the design

process. Section C presents the results for tdi altttude rate controller. In the interest
of brevity, only the initial trial run and the final solution for the altitude rate controller

are presented. The coupled dynamics ol AROD's pitch and yaw is examinivd in greater

detail in Section D.
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B. AROD ROLL RATE CONTROLLER

1. The Roll System

The purpose for roll rate control of the AROD is to allow the remote pilot to

command a desired rotation velocity about the vehicle's longitudinal, or x, axis. Such
movement allows the camera aboard the vehicle either to slowly scan a selected ground
sector or to terminate the rolling motion so that a target of interest can be further
studied. The nature of remote sensing requires that the vehicle respond rapidly to a
roll rate command. When the remote pilot locates a ground target, he needs to be able

to swiftli bring the vehicle to a zero roll rate condition with negligible overshoot- Such
movement is commanded through a twistable handgrip control located on the pilot's

console. It is assumed that this roll rate command, pc, is limited to a step input
of I radianisecond (57.3a/second). Although no time response criteria are specified by
the Marine Corps, it is assumed for the purpose of this work that the following design
specifications for roll rate are required :

1. Zero steady state error for a step input is required.
2. The two percent settling time, t2%, is less than I second.

3. No overshoot is allowed.
The simplified equation of motion which describes AROD's roll rate

subsystem is given in Equation 3.1.

p = La a (3.1)

The aileron servo dynamics are modelled in Equation 3.2 as a second order plant with
a natural frequency, tw, of 2 Hz and a damping coefficient, ;, of 0.707.

a = -2;€O)a- (028a + o)2ua (3.2)

The definitions in Table 4 apply to Equations 3.1 and 3.2. In order to apply the theory
of optimal control, a suitable state space representation of the roll rate system must

first be developed. Figure 3.2 presents the state space signal flow graph selected for

this subsystem.
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TABLE 4

VARIABLE DEFINITIONS FOR AROD ROLL RA'TE EQUATIONS OF
MOTION

Variable Definition Value Units

p Vehicle Roil Rate TBD radians/second

La Afler Effectiveness -21.29 seconds"2

aCoellicient

6a tilhron• Servo .5 30o radians
neuecdon Angle

a Ailron Servo : 50*/sec radians/second
Deflection Velocity

Ailerop Sevo 0.707 unitless
Damping Coeficient

(0 Aileron Servo 12.57 radians/second
Natural Frequency

u Control Input TBD volts
to Aileron TServo

By designating the output of each integrator in Figure 3.2 to be a state, the folowing

third order state equations are derived:

x -(3.3)

0o -21.29 .0 01
1 0 1 x + 0 (3.4)

0-157.91 -17.77 157.91

ua= F {x. r) (3.5)

Assuming that a unit step roll rate is commanded, the command input vector becomes

r Jac 0 (3.6)
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where the subscipt c indicates a command input variable. Now that the roll rate

system and its constraints have been identified, the next step is to use the OPTCON
program to design a suitable roll rate controller.

2. RoHl Rate Controller Design
a. Choosing a Sampling Frequency

In order to determine an appropriate sampling rate for the roll rate system
given in Equations 3.3 through 3.6, the bandwidth of the open loop system is first
determined. The open loop transfer function for the roll rate system is given in

Equation 3.7.

P(s) (157.91) (21.29)
U8ls) sl + 17.77 s + 157.91 (3.7)

The open loop Bode diagram for this transfer function is shown in Figure 3.3. The
negative 3 dB bandwidth of the magnitude curve is approximately 12
radians per second or 2 Hz. Using the criterion discussed in Chapter 2, The Nyquist
sampling rate, f., is 4 Hz. In order to avoid aliasing effects and to ensure that the
sampled system is a reasonable representation of the continuous time system, it is
decided to employ a sampling frequency that is at least five times greater than f.. A
comparison of the effect of using various sampling frequencies is given in Table 5. The

cost function which is used to obtain the optimal gains for this comparison is included
in TabO, 5 and is hereafter referred to as the baseline cost function. The column
labelled "Number of Stages Required' in Table 5 refers to the number of discrete time
stages that must elapse before the optimal gain vector reaches its steady state value,
F... Notice that the magnitude of the steady state gain vector is related to the

sampling frequency. In general, a faster sampling rate yields larger feedback gains.

"Also notice that the sampling rate affects the amount of real time that is required for
the gains to reach steady state. For example, when f. is 20 Hz, it requires 1.60 seconds

for F., to be achieved. When f. is 40 Hz, however, a total time of 2.23 seconds elapses
before Fs is achieved. These considerations are important if the control gains are to
be dynamically implemented. In the case of this design, the control implementation is

limited to steady state values of the optimal gains. The unit step time response
obtained by using steady state optimal feedback gains is observed to be nearly identical
for all three of the sampling rates listed in Table 5. Specifically, the roll rate state, xt,

44.
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"TABLE 5
EFFECT OF SAMPLING FREQUENCY

ON ROLL RATE SYSTEM

Baseline Cost Function

"H " . Q" . R-o.

mpling NoUber
Run Pre n D F Fes(z) atagep

Rtequired

1.000 1 008 -198 -0559 Q.169608 .0o; 781, 19 31 20 4:000 -':"1 -8-N 4 A 3

fl*1 -.. 5244 0.0057;9 -Q.008 0.7M4

40. "0.9576 0.0199 0.0424 8.83 89
00000 -3.1355 .0.6047 3.1355 -0.1999

1000 -0.•2•24 -0.0010 800 0.5126
3 100 0 0.•9 0.0091 0 .007 -2.5612 15

0.0000 -1.4430 0.8302 1.4430 -0.4400

time response exhibits an overshoot of approximately 3.7% and a 2% settling time of
1.3 seconds. See Figure 3.4. This implies that any of the three sampling rates
examined is acceptable. Because it is generally considered good practice to implement

small feedback gains when possible, it is decided to employ a sampling frequency of 20
Hz for the remainder of the roll rate controller design.
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b. Methodology

At this point, four different groups of cost functions are examined. For a

given cost function group, the H and Q matrices are held constant while the control

weighting factor, R, is varied within the range (0.01, 100). Approximately IS runs are

made for each cost function group with a different value of R inserted into the cost

function for each run. After the steady state gains are determined for a given run, they

are implemented into the control equation and a time response for the roll rate state,

x1, is obtained. The percent overshoot and 2% settling time are recorded for each xi

time resjponse. A summary of this information is presented for the fouri cost function

groups in Tables 6, 7, 8, and 9. Following each of these four tables, there appears a

graph of two time response parameters, percent overshoot and settling time, versus the

value of the control weighting factor, R.

It is hardly necessary to include a time response graph for all of the 59

total runs examined. It is instructive, however, to compare the time responses for a

selected set of cost functions. Three runs in each of the parameter summary tables,

Tables 6 through 9, are flagged with asterisks. These flags indicate that the roll rate

time response graph for that run is included subsequent to the applicable summary

table. Keep in mind that the criteria for the roll rate step response is specified to be

such that there is no overshoot and the 2% settling time is less than one second. A

discussion of the results from the four cost function groups follows the last figure in

this series of tables and graphs.

48
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TABLE 6

ROLL RATE PARAMETERS FOR GROUP I

Sampling Interval T 0.05 seconds

Run Control Steady State Percent Settling
Weht ~G s Overshoot Time

F" f (sec)

1 0.01 0.1727 -0.2944 -0.0892 4.03 1.31
2 0.03 0.1726 -0.2942 -0.0891 4.02 1.31

3 0.05 0.1725 -0.2940 -0.0890 4.X2 1.31

4 * 0.10 0.1724 -0.2936 -0.0890 4.00 1.31

5 0.30 0.1717 -0.2920 -0.0884 3.95 1.31

6 0.50 0.1711 -0.2904 .0.0879 3.89 1.31

"- 7 1.00 0.1696 -0.2866 .0.0866 3.74 1.30

8 3.00 0.1638 -0.2728 -0.0820 3.17 1.30

9 5.00 0.1587 -0.2610 -0.0780 2.68 1.29

10 7.00 0.1541 -0.2509 -0.0744 2.22 1.24

11 10.00 0.1480 -0.2380 -0.0697 1.65 0.87

12 * 20.00 0.1323 -0.2078 -0.0582 0.42 1.01

13 30.00 0.1209 -0.1886 -0;0504 0.00 1.17

14 50.00 0.10.53 -0.1646 -0.0403 0.00 1.47

15 * 100.00 0.0835 -0.1350 -0.0278 0.00 2.05

See Eigure 3.6.•* See FIgure 7.
• * See Figure 3.8.
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TABLE /
ROLL RATE PARAMETERS FOR GROUP 2

H 0 [0 §

Sampling Interval T - 0.05 seconds

Run Control Steady Staze Percent Settling
eht at Overshoot T'Inekh fl x2 f3 (see)

1 0.01 0,4803 -1.2269 -0.1073 4.37 0.79
2 0.03 0.4786 -1.2218 -0.1068 4.35 0.79

3 0.05 0.4769 -1.2168 -0.1063 4.33 0.79

4 * 0.10 0.4728 -1.2047 -0.1052 4.23 0.79

5 0.30 0.4576 -1.1598 -0.1009 4M08 0.79

6 0.50 0.4441 -1.1202 -0.0971 3.88 0.79
7 1.00 0.4159 -1.0381 -0.0893 3149 0.79

8 3.00 0.3442 -0.8374 -0.0700 2.12 0.73
9 5.00 0.3024 -0.7251 -0.0593 1.12 0.57

10 7.00 0.2737 -0.6504 -0.0522 0.44 0.62
11 ** 10.00 0.2435 -0.5735 -0.0450 0.00 0.70

12 30.00 0.1596 -0.3702 -0,0268 0.00 1.16

13 50 00 0.1281 -0.2969 -0.0206 0.00 1.46
14 * 100.00 0.0937 -0 1175 -0.0144 0.00 2.00

•*: ee figure 3. 10.
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TABLE 8

ROLL RATE PARAMETERS FOR GROUP 3

H Q 4 OJ

"-. Sampling Interval T - 0.05 seconds

Run xo•ltr Stekdy State Percent SZ.ling
St ars f Overshoot (Ise

1 0.01 1.1983 -2.6905 -0.1332 4.53 0.48
2 0.03 1.1622 -2.6141 -0.1296 4.54 0.49
3 0.05 1.1300 -2.5460 -0.1264 4.58 0.49

4 0.10 1.0625 -2.4028 -0.1196 4.65 0.49
5 0.30 0.8917 -2.0369 -0.1023 4.63 0.51

6 0.50 0.7917 -1.8200 -0.0919 4.29 0.52
7 1.00 0.6497 -1.5079 -0.0770 3.64 0.53

8 1.50 0.5689 -1.3280 -0.0683 2.87 0.54
-9 2.00 0.5144 -1.2053 -0.0623 2.33 0.53

10 3.00 0.4426 -1,0425 -0.0543 1.28 0.43

11 5.00 0.3621 -0.8576 -0.0452 0.00 0.50
12 10.00 0.2712 -0.6458 -0.0345 0.00 0.71

13 15.00 0.2273 -0.5427 -0.0292 0.00 0.87

14 * 20.00 0.2001 -0.4782 -0.0258 0.00 0.97
15 30.00 0.1663 -0.3986 .0.0217 0.00 1.16
16 50.00 0.1316 -0.3153 -0.0172 0.00 1.46

17 1 100.00 0.0950 -0.2277 -0.0126 0.00 2.00

See Eigure 14.
~ ee 1ur :1)5:• S*ee figure 6
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TABLE 9
ROLL RATE PARAMETERS FOR GROUP 4

Sampling Interval T - 0.05 seconds

Run Control Steady State Percent Setling
Wcht fl Gai2s Overshoot nse

R (sec)e

1 0.01 3.1663 -5.4007 -0.1713 9.57 0.27
2 0.03 2.3689 -4.3357 -0.1480 8.82 0.31
3 0.05 2.0386 -3.8586 -0.1366 8.67 0.33
4 * 0.10 1.6396 -3.2461 -0.1209 7.37 0.36

5 0.30 1.1264 -2.3821 -0.0962 6.22 0.42
6 0.50 0.9350 -2.0316 -0.0852 5.96 0.44

2_7 1.00 0.7182 -1.6110 -0.0709 4.51 0.48

8 3.00 0.4613 -1.0739 -0.0506 1.33 0.41
9 5.00 0.3718 -0.8759 -0.0425 0.00 0.49
10 10.0- 0.2750 -0.6551 .-0.0329 0.00 0.72
1 i 30.00 0.1674 -0.4020 -0.0210 0.00 1.16

12 50.00 0.1320 -0.3175 -0.0168 0.00 1.46

13 *** 100.00 0.0951 -0.2289 -0.0123 0.00 2.00

• See f igure 3.18.
e pgure

eeigure 3.20.
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c. Results

(1) Group I Cost Functions. All three states are weighted with A value of

unity for the Group 1 cost functions. This implies that the designer is attempting to
minimize the error in all states with equal emphasis. Pursuit of this group of cost
functions is made in order to determine generai patterns of cause and effect. For
example, it is apparent in Table 6 that the control weighting factor, R, significautly
affects the magnitude of the steady state optimal feedback gain vector, F By
increasing the penalty on the control effort, the magnitudes of the feedback gains are

reduced. Thus, if the coatrol system is physically limited to some maximum value of
control effort, then the R term is the logical parameter to adjust. The percent

overshoot and settling time data from Table 6 indicates that R directly aftflcts the time
response as well. From Figure 3.5, note that the value of R has negligible effect on :he
time response parameters foe: any value of R les3 than unity. Refer' to Figure 3.6 in
which R = 0.1. As the control weighting factor inrieases above unity, however, The
thie response is dramatically affected. For values of PR. greater than 30, the time
response exhibits no overshoot and the settling time appears to lengthen without

bound as the system becomes increasingly slow. Refer to Figure 3.8 in which
R - 100. Also notice in Figure 3.5 that there is no cost function in Group I that
yields an acceptable time response which satisfies both of %he roll rate criteria. The
cost function in Group I which yields a time response closest to the design
specifications is run number 12 shown in Figure 3.7. Thns run is subsequently used as

a basis-for comparison of the tinwe responses generated by the other three groups of
cost functions.

(2) Group 2 Cost Functions. Because acceptable results are not obtained
from the Group 1 cost furcticns, it is decided to place increased emphasis on the error
in the x1 state while reducing the emphasis on the error in the x2 and x3 states. This

tactic is allowable because the maximuin absolute values of the x2 and x3 states are
significantly less than th-. constraints for the 6a and ka servo states listed in Table 4.
Table 7 summarizes the data for Group 2. Figure 3.9 evidences the relationship
between the xi time response parameter3 and the control weighting factor, R. Notice
ii this figure that an acceptable time response is expected for any Group 2 cost
function in which 10 : R S 20. Figure 3.11 shows the x, time response for run
'-umber 11 in which R -, 10. This time response meets the required specifications for
i•-i1 rate Note, however, tuat the gains for this rim are approximately 80% higher, on
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the average, than the gains for the best run, number 12, in Group 1. in order to

reduce the gains so that only a swall control effort is demanded, there is more work yet

to beI done.

(3) Group 3 Cost Functions. Making the penalty on the xi error

state 10 times greater than the penalty nn the x2 and x3 error states in the Group 2

cost functions appears to be a reasonable mechanism for obtaining an.adequate time

response. In an effort to reducc the magnitude of the control effort, the ratios of

h111,h22, hj1 /h 33, q11!q.,2, and q,;%q33 are increased to 100 for the Group 3 cost

functions. Table 8 and Figure 3.13 present the data for tbis group. The time relpenses

obtained for this grcup are very similar to those obtained for Groups I and 2. Notice

in Figure 3,13 that the overshoot is zero for all cases in which R Z 5. In addition,

the settling time is less than one second when R - 20. The steady state gains for run

number 14 average only 42% greater than F,, for run number 12 in Group 1. Thus the

hypothesis tested in the Group 3 cost fuinctions is validated.

(4) Group 4 Cost Ftnctions. The cost functions in Group 4 penalize errors

onIy in the x, state and the control effort. That all other elements of H and Q are zero

implies that no penalty is assessed against deviations in the x. and x3 states. Table 9

and Figure 3.17 present the data for this group. Run number 10 is deemed to be the

most acceptable time response and is shown in Figure 3.19. While this design satisfies

the design criteria, note that the steady state control gains average 93% greater than

the most acceptable run in Group 1. This is the greatest increase in control gains that

is observed. Also notice that the percent overshoot curve in Figure 3.17 increases

upwards of 9%. This is much greater than the maxiimum' overshoot of 4.65% observed

in Groups 1, 2, and 3. For these two reasons, it is determined that the cost functions

tested in Group 4 do not need to be turther pursued.

(5) Summary. Figures 3.21 and 3.22 summarize the inforfnation contained

in Tables 6, 7', 8, and 9. It is interesting to note in Figure 3.21 that the first three

groups of cost functions yield suprisingly similar curves for the percent overshoot of

the roll rate system. That. the Group 4 cost functions produce a much more erratic

curve is attributed to the fact that ne weight is placed on the x. or x3 states in this

group. The roll rate settling times in Figure 3.22 exhibit similar patterns for all four

groups of cost functions. Note that in all cases there appears to be a minimum settling

time possible when 2 : R S 10. For values of R > 10, the large emphasis on control

effort produces small steady state gains which in turn yield a s!ow system.
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d. The Final Design

Based on the time response specifications and on the desire to design a

control system which implements minimal steady state gains, it is decided that

run number 14 in Group 3 is the best solution for a roll rate controller. The time

response for this set of parameters appears in Figure 3.15.

C. AROD ALTITUDE RATE CONTROLLER

I. The Altitude Rate System

-Because the primary flight mode for AROD is low altitude hover-, it -is

important that there be a reliable control system to maintain the vehicle's vertical

position relative to the earth's surface. The throttle on AROD's two cycle engine

provides the mechanism for altitude rate control. Table 10 defines the terms which are

involved in the altitude rate equations of motion.

TABLE 10
VARIABLE DEFINITIONS FOR AROD ALTITUDE RATE EQUATIONS

OF MOTION

Variable Definition Value Units

h Vehicle Altitude Rate TBD feet/second

-Ch, Engine .Th.usto. RPM 0.0865 ft/seconds2/rad
Dynamic Coe iclent

as 5hacmgein TBD RPM
" Engine Speed

To ýpgine Las 0.5 seconds- lane Constant
K0 fngine Scale 837.8 rad/sec/rad" l-attor

at ottle Servo : 30. radians
Rheflection Angle
6t Throttle Servo . 50./sec radians/secondDeflection Velocity

Throttle Servo 0.707 unitless
Damping Coefficient

(o Throttle Servo 12.57 radians/secondNatural Frequency

ut Con rol Ipput TBD volts
to Crotte Servo
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By commanding a desired altitude rate, h;, the pilot sets in motion the following

sequence of events :

I. A throttle servo control signal, ut, is generated within the controller.

2. The throttle servo position is adjusted.

3. The actuator position commands a specific engine speed.

4. A change in engine RPM causes a change in the vehicle altitude rate.S.

The rate of change, h, of the vehicle's altitude rate, h, is proportional to the change in

engine RPM as shown in Equation 3.8.

"h - Ch (3.8)

where the dynamic constant, Ch, is experimentally determined in wind tunnel tests.

The engine is modelled as a first order lag system according to Equation 3.9.

;s - (-l/%e)6s + (Kd%)at (3.9)

The throttle servo is modelled as a second order plant in Equation 3.10.

at M- -2;(6t -. 028t + wo2Ut (3.10)

The signal flow graph for this system is shown in Figure 3.23. The following state

space equations are used to design the controUer for altitude rate:

li 
t

x- [t](3.11)

0 -2 1675.5 00x 0 0 0 1 x + [ ut (3.12)

0• 0 -157.91 -17.77 157.91
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ut - F {x-r} (3.13)

If a unit step is commanded for the altitude rate, then the command input vector

hecwomes

hc I

r - s¢ 0 (3.14)
A0 0
6t 0

2. Altitude Rate Controller Design

The system given in Equations 3.12 and 3.14 is entered into the OPTCON

program and a controller is designed according to a procedure similar to that explained

for the roll rate controller. As before, a sampling rate of 20 Hz is used for all runs.

Only two runs are hereafter presented because the lessons learned during the design of

the roll rate controller apply equally as well to the design procedure for the altitude

rate controller. The performance specifications for this control system are designated

to be as follows:

1. Zero steady state error for a step input is required.

2. The two percent settling time, t2 %, is less than 5 seconds.

3. No overshoot is allowed.

- -The first run is made using a baseline cost function. The results obtained for

this run appear in Table 11. Notice that an incredibly large number 3f stages are

required in order for F., to be achieved using this cost function. If the gains were to be

implemented dynamically at 20 Hz, more than 38 seconds would be required before the

steady state gains are available. This clearly is .not desizable since the settling time

must be less than five seconds. The unit step time response using steady state gains

from this first run is shown in Figure 3.24. Even after 20 seconds, the des:ired' altitude

rate is not yet achieved. The cost function used to generate this solution ih deemed to

be unsatisfactory and a better solution is sought.

The final run for the altitude rate controller is summarized in Table 12. The

cost function for this run places 100 times more emphasis on errors in the x, state than

on errors in the x2 and x3 states. The altitude rate time response shown in Figure 3.25

exhibits acceptable performance characteristics. By choosing the cost function wisely,

it becomes possible to design a satisfactory controller for this system.
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TABLE I 1

INITIAL ALTITUDE RATE PARAMETERS

Cost FunctionK t
"1 0 0 0 "1 0 0 O0

0 1 0 0 Q M 0 1 0 0R - '
0 0 1 0 0 0. I 0

L0 0 0 1j 0 0 0 1j

Steadj State Nunlber Percent .. ttling•ains,01, Overshoot Time
3 tage s . (sec)fl f'2 f'3 f4 Required

.0.0544 -0.0461 -6.2776 -0.1948 763 0.00 > 20.0

TABLE 12

- FINAL ALTITUDE RATE PARAMETERS

Cost Function

100 0 0 0 1 0 0 0

0 1 0 0 0 .01 0 0
H-Q-R-I

0 0 1 0 0 0 .01 0

Steady State Nunrber Percent •ttling
Gaiis 01 Overshoot Atinetsams . tages p vrho (sec)

f, f2 f3 f'4 Requiaed

-0.3485 -0.0312 -4.5999 -0.1569 128 0.00 4.65
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D. AROD PITCH ANGLE AND YAW ANGLE CONTROLLER

1. The Pitch and Yaw System

Gyroscopic coupling between the pitch and yaw dynamics of AROD creates

an interesting control problem. Refer to Table 13 for an explanation of the terms

involved in the pitch and yaw equations which follow.

TABLE 13

VARIABLE DEFINITIONS FOR AROD PITCH AND YAW
EQUATIONS OF MOTION

Variable Definition Value Units

q Vehicle Pitch Rate TBD radians/second

0 Vel-dcle Pitch Angle TBD radians

C Pitch to Yaw -6.78 seconds"I
Gyroscopic Coupling

Me FlevAtor Effectiveness -14.51 seconds"2
Coeflicient

de Elevator Servo S 30a radians
Deflection Angle

6 Elevator Servo : 50o/sec radians/second
Deflection Velocity

ue Co lrol Inpvt TBD volts
to Elevator Servo

r Vehicle Yaw Rate TBD radians/second

Vehicle Yaw Angle TBD radians

Cr )Caw to Pjtct . 6.75 seconds.I
Gyroscopic Coupling

Nr Rudder Effectiveness .16.68 se :onds"2

Coefficient
R der Servo : 30. radians
Delection, Angle

6 Rudder. Servo < 50./sec radians/secondDeflection Velocity

ur Control In ut TBD volts
to Rudder §ervo
,levatpr/uRuddr Servo 0.707- unitless
ajamping oe icient

k evator,judder Servo 12.57 radians/second
Natural irequcticy
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The pitch and yaw equations of motion are given in Equations 3.15 through 3.18.

q = Crr + Mese (3.15)

-Jq dt (3.16)

"r- C q + Nrar (3.17)

- "r dt (3.18)

Note that crosscoupling between the pitch and yaw equations enters via tlhe two

gyroscopic coupling terms, Cq and Cr. The values listed in Table 13 for these two

coefficients are based on an assumed constant propeller -telocity of 7200 RPM.

As before, Lhe elevator and rudder control vane servos are modelled as second

order systems according t6 Equations 3.19 and 3.20.

3 - -2;068 6. (-28e + (o2Ue (3.19)

"- -2"(o6 
-0

26r + (O2ur (3.20)

A coupled eighth order system results from Equations 3.15 through 3.20. The signal

flow diagram which represents this MIMO system is given in Figure 3.26.
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Figure 3.26 Sigaal Flow Diagram for Pitch and Yaw Angle Control
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Defining the eight states to be:

x -EOq W6 e * r ar Ar] t (3.21)

the state space equation for the pitch and yaw coupled system is defined as

,. Ax + f (3.22)

where

0 -1 0 0 0 0 0 0
0 C -14.31 0 0 6.75 0 0
0 0 0 1 0 0 0 0
0 0 -157.91 -17.77 0 0 0 0A - (3.23)
0 0 0 0 0 .1 0 0
0 -6.78 0 0 0 0 -16.68 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 -157.91 .17.77

0 0
S 0 0
05.9 0

B - 0 (3.24)0 0
00 0

and the multi-input control vector is

L - 1 Fmimo {x- r} 
(3.25)

U us
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"2. P!tch Angle and Ytw Angle Controller Design

a. Methodology

Notice in Equation 3.25 that the control input, u, is a (2 x 1) vector. Up

to this point in the AROD control design, the control input has been limited to a

scalar signal. The multi-input control that results from gyroscopic coupling between

pitch and yaw requires special attention. Consider the following points :.

1. The optimal feedback gain matrix, F, is determined from the solution of the
discrete matrix Riccati equation. This solution requires that the inverse of the

,xerm {rt P(K-l) r + R) in Equation 2.28 be determined.

2. The cost function for a SISO system requires that the control weighting factor,
R, be a scalar.

3. The cost function for an n order MIMO system with f control inputs requires
that R be an (C x t) matrix.

Thus, for a SISO system, the solution for F is greatly simplified because the term in

Equation 2.28 is a scalar quantity. For a MIMO system, however, a matrix inversion

routine is required in order to solve for the optimal gains. Although computationally

possible, it is decided for the purpose of this work that no m=trix inversion routine is

to be included in the current version of OPTCON. This implies that the ability of the

OPTCON program to solve for optimal feedback gains is necessarily limited to SISO

systems. This limitation is reasonable since a multitude of control problems can be

reduced to single input systems. In the case of AROD, however, gyroscopic coupling

is a permanent feature of the pitch and yaw dynamics. Thus, a MIMO system is

inevitable. The four step tactic used to design a control system for this non-trivial

problem is as follows :

1. First assume that the gyroscopic coupling terms, Cq and C., are zero so that the
coupled eighth order system reduces to two independent fourth order systems.

2. Use OPTCON to solve for the optimal feedback gains for the two independent
systems.

3. Implement the steady state gains so obtained for the fourth order uncoupled
systems into a simulation model for the eighth order coupled system.

4. Experiment with various combinations and modifications to the (2 x 8)
feedback matrix, Fmio, until a satisfactory time response is obtained for the
pitch angle and yaw angle of the coupled system.

Note that the design procedure listed above doe, •ot t the most direct method

to design a MIMO controller using optimal contrt. theory. Rather, this method is an

attempt to solve a complex problem using a tool that is designed to solve simpler
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problems. For this reason, the results may not necessarily be expected to nieet the

same high standards required of the two previous control designs. The target

performance specifications for the pitch and yaw control system are stated to be

1. Zero steady state error for a step input is required.

2. The two percent settling time, t2 /, is less than 2 seconds.

3. Less than 10% overshoot is allowed.

(1) Decoupling the System Equations. The decoupling procedure results in

two fourth order systems. The uncoupled pitch angle state space equations are.[e M ] (3.26)

00 -1 0 0

•'" 0 0 -14.51 0 0 0 e 1.7
S0 0 0(327)

LO0 0 -157.91 -17.77 L57.91j

u -Fe {x0- re) (3.28)

If a unit step is commanded for the pitch angle, then the pitch command input vector,

becomes

re qc 0 (3.29)

L 9 *j 0
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The uncoupled yaw angle state space equations are:

XI - [] (3.30)

. 0 -16.68 0 +xt " 0 01 X + 0 r (.)

LO 0 -157.91 -17.77 L157.91

ur - Fr {x - r} W(3.32)

If a unit step is commanded for the yaw angle, then the yaw command input vector

becomes

r* 0 (3.33)

L rej 0

-The similarity between the dynamics of the uncoupled pitch and yaw systems is

advantageous. For example, it is found that the elevator and rudder control gains, F.

and Fr, which are generated by OPTCON have identical steady state values. For this

reason, only one set of steady state gains, F.., needs to be generated for each cost

function. The individual elements of F., are hereafter referred to as fl, f2, f3, and f4 '

* (2) Solving for the Uncoupled Controller. The solution for F., for the two

fourth order systems is straightforward and follows the procedure established earlier in

this chapter. Table 14 summarizes the data from the initial run. A unit step time

response for the pitch or yaw angle controller implementing steady state gains from

Table 14 is shown in Figure 3.27. Table 15 contains the data for the final run. The

time response for this last controller appears in Figure 3.28. The steady state gains
listed in Table 15 serve as the foundation upon which the coupled controller is

subsequently designed.
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TABLE 14

INITIAL UNCOUPLED PITCH OR YAW PARAMETERS

Cost Function

"0 0 0 1 0 0 0

0 1 0 0 1 0 0
0 0 1 0 Q 0 0 1 01 R -

U 0 0 j L0 0 0 1j

Steady .State unuber Percent Settling
n Nof- Overshoot Time
atages . (sec)f, f2 f3 f ,e4e

-0.1704 0.2417 -0.2490 -0.0858 96 0.00 4.15

TABLE 15

FINAL UNCOUPLED PITCH OR YAW PARAMETERS

Cost Function

L. 0 0 0 1 J LO 0 0' .01J

Steadv .tate Nunober Zerceot & ttlingZoams o0 Overshoot Tine
.•taged (sec)fl f2 f3 f4 Required

-0.3961 0.2808 -0.4158 -0.0259 58 3.98 2.50
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(3) The Coupled Feedback Matrix. In order to implement the SISO

feedback gain vectors, F. and Fr, into the coupled MIMO state equations, the (2 x 3)

feedback matrix, Fmi.o, is formed as shown in Equation 3.34.

f[ f2  f3  r4  315 316 317 3181
Fmizo- (3.34)

1021 022 023 024 fl f2 f3 f4
I- - -. -

The Oi, elements of Fmimo represent those feedback elements which are not specifically
generated by OPTCON. The success of the final control system is contingent upon

proper selection of values for these elements of Fmimo. For the purpose of the

following discussion, the reader is encouraged to refer to the signal flow graph shown

in Figure 3.26.
(4) Analysis. There are numerous ways to select the eight unspecified

feedback gains in Equation 3.34. The seven schemes examined during the course of

this design are summarized in Table 16. The first two columns in Table 16 identify the

controller structure used to generate the elevator and .udder control signals, u. and ur.

The third column refers the reader to the appropriate figure containing the pitch or

yaw angle time response for that particular set of parameters. The last two columns

summarize the time response data for each controller design. At the bottom of
Table 1.6 are listed the exact numerical values for the controller gains.

b. Results
(1) Controller Number One. The feedback matrix, Fmimo, in this first

design assumes that the four states of the yaw equations have no influence on the pitch

control input, u0 . Similarly, the four states of the pitch equation have no influence on

the yaw control input, u.. As expected, due to the known coupling that exists

between the pitch and yaw dynamics of the vehicle, the time response in Figure 3.29
exhibits unsatisfactory performance.

(2) Controller Number Two. For this design, the pitch angle state, x1,

influences the yaw control input, u., while the yaw angle state, x,, contributes to the
pitch control input, uO. From the time response in Figure 3.30, it is apparent that this

design is not satisfactory.
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TABLE 16

PITCH/YAW CONTROLLER DESIGN SCHEMES

DsFmm Time Percent Sc.tling
Response Overshoot Time

Number Organization Figure (sec)

I fl f2 f3 f4 0 0 0 0 3.29 34.3 18.9

o 0 0 0 fl f2 f3 4

2 f1 f2 f3 f4 fl 0 0 0 3.30 45.1 N/A

fl0 0 0 fl1 f-2 f3 f

3 fl f2 f3 f4 fl f2  0 0 3.31 N/A N/A

C f f-2  0 0 fl f2 f3 f4

4 fl f2 f3 f-4  f f2  0 0 3.32 2.15 1.85

f -f2 o 0 fl f2 f3 f4

__ f f2 f2 3  f4 fI f2  0 0 3.33 0.00 1.88

fl -C, 0 0 f1 f2 C3 f4

6 f, f2  f3 f4 f-1 f2  0 0 3.34 0.00 N/A

f-l -f2 f3  f4 fl f2 f3 f-4

fl f2 f3 f4  0 f2  0 0 3.35 22.5 8.57

0 -f2 0 0 fl C2 C3 f4

f- - .0.3961

f2 - 0.2808

fC - 0.2954

f3 - .0.4158
f4 - -0.0259
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(3) Controller Number Three. Because the gyroscopic coupling between

the pitch and yaw equations is directly related to the pitch rate, x2, and the yaw

rate, x6, it is decided to include these two states in the makeup of the yaw control and

pitch control respectively. This seems like a logical design tactic at first but the

resulting time response in Figure 3.31 proves otherwise. This design is clearly unstable.

(4) Controller Number Four. Notice in the coupled systerm signal flow
diagram in Figure 3.26 that the coupling coefficients, Cq and Cr, are nearly equal in

magnitude but opposite in sign. This realization causes the designer to hypothesize that

the sign of 022 in Fnimo should be reversed from the value previously used in
controller design number 3. As shown in the time response of Figure 3.32, this

technique yields promising results. Although a steady state error of 2.15% exists, there

is merit in pursuing this design further.

(5) Controller Number Five. By finetuning the value substituted into E322
in Fmimo, the time response for pitch angle or yaw angle is made to satisfy the desired

performance criteria. The time response in Figure 3.33 exhibits no steady state error,

zero overshoot, and a settling time, t2%, of slightly less than two seconds. This

controller design, then, is completely satisfactory.

(6) Controller Number Six. For this design, all eight states are allowed to
influence both u0 and u W, The time response so obtained is shown in Figure 3.34.

Even" though the steady state angle is only 75% of the commanded value, this

controller design appears to be potentially useful. By tuning the gains iteratively, it is

believed that zero steady state error is achievable with this design.

(7) Controller Number Seven. This final design is a modification to

controller number 3. In this case, only the pitch rate and yaw rate contribute to the

crosscoupled control signals. This design effort results in unsatisfactory performance

as shown in Figure 3.35.

c. The Final Design

Controller number 5 is selected as the best design for a pitch/yaw angle
controller. The time response for this design appears in Figure 3.33. Note that this

design is based on feedback gains generated by OPTCON but that a modification to f2

is required in order to obtain the final design. Thus, the controller is not optimal, by

formal definition, even though optimal control theory provides the foundation for its

development.
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IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
The lessons learned during the course of this work are as follows

1. The cost function weighting parameters, H, Q, and R, play vital roles in
determining the magnitude of the steady state optimal feedback gain matrix,
Fs. These control gains, in turn, significantly affect the time responseof the
controlled system.

2. There is no magic formula to determine proper values for the weighting factors.
A reasonable starting point is to use the baseline cost function in which all
diagonal elements of H, Q, and R are assigned the value of unity and all off-
diagonal elements are zero.

3. The process of trial and error is prerequisite to the successful design of an
optimal control system. Only through an iterative procedure does the engineer
establish the true nature of the problem at hand.

4. There are obvious trends to be aware of. These include:
a. The sampling frequency, f,, must be fast enough to avoid aliasing effects.

As predicted, the use of a sampling frequency that is five to ten times faster
than the Nyquist frequency seems to be adequate.

b. As the selected sampling frequency increases, the optimal gains generated
also tend to increase in magnitude.

c. The control weighting factor, R, for a SISO system can be used as a
parameter to systematically alter the time response of the system. As the
relative weight on the control effort increases, the steady state gains tend to
decrease in magnitude. This generally produces a slow system that exhibits
little or no overshoot. On the other hand, if the value of R is decreased,
the steady state gains can become so large that a very fast and highly
oscillatory system results.

5. The controller design for a MIMO system is significantly more involved than
the design for a SISO system. If the engineer can logically and accurately
decouple the MIMO system into multiple SISO systems, then the design effort
becomes much easier. As shown in the pitch and yaw controller for AROD,
this method is feasible.

B. RECOMMENDATIONS FOR FURTHER WORK
The following areas present valid opportunities for useful expansion of this

work:
1. A parameter identification procedure which aids the design engineer in

determining or estimating the A, B, 0, and r plant matrices is needed. The use
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of a Fast Fourier Transform (FFT) algorithm is one possible solution to this
requirement. Such a program could be used in conjunction with, but not
necessarily integrated into, the existing OPTCON package.

2. The OPTCON program is limited in that it does not generate optimal feedback
gains for a MIMO system. A matrix inversion routine is needed so that the
discrete matrix Riccati solution can be determined for any (n x f) B or (V
matrix.

3. The theory of optimal control assumes availability of all states for feedback.
The design process must account for the fact that all states are not always
measured. In the case of AROD, the servo position and rate states are not
available for feedback. This means that an observer must be designed ih order
to provide the missing state information.

4. The three control systems which are herein designed must be evaluated on the
actual vehicle. Although computer simulations provide a wealth of insight, the
proof of a good design rests in the ability of the system to function in the
outside world.
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APPENDIX A
THE OPTCON PROGRAM

1. OVERVIEW

The purpose of this appendix is to describe in detail the OPTCON computer
program which was developed in support of this thesis. OPTCON derives its name
from OPTimal CONtrol. A previous edition of OPTCON by Professor H.A. Titus of
the Navail Postgraduate School provided the starting point for the work that follows.

The original OPTCON program allowed the user to input a state space system either in
the continuous time domain or in the discrete time domain. Using matrix calculations
to solve Equations 2.28, 2.29, and 2.30, this first version of OPTCON generated a table
of feedback gains and immediately terminated execution. The motivation for

improving the original OPTCON is fourfold.

1. The design process is an iterative technique. The OPTCON program needs to
be flexible enough to allow minor changes to be made to specific parameters
without the requirement to re-initialize all of the cost function and system
values.

2. The gain trajectory table is not a convenient means by which to analyze the
solution to an optimal control problem. A graph of the feedback gains verses
time provides better insight.

3. A time response of the state space is needed in order to allow the designer to
quickly evaluate the performance of the system.

4. The program should be user friendly. The original OPTCON demanded that
the user flawlessly enter the correct response to every question on the first
attempt. Woe be it to the user who accidentally types a letter in response to a
question that requires a numerical answer. The program aborts and any effort
that was spent in entering information is wasted. The frustration factor for
such an unfriendly program is likely to leave the program sitting on the shelf
with nobody to use it.

With these points in mind, the OPTCON program is rewritten to provide an

interactive, manu driven, user-friendly, optimal control design tool that capitalizes on
the graphical capabilities of modern microcomputers. The program is written in
IMICROSOFT Fortran and is listed in Appendices B, C, and D. Appendix B contains

the driver program, MAIN. Appendix C contains the majority of the subroutines
which are called by MAIN. Appendix D contains the plotting subroutine, GRAPH,

which makes use of the PLOT88 graphics software package.
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In order to use OPTCON to its full potential,- the user needs access to the

following:

"1. A microcomputer capable of executing MICROSOFT Fortran based programs.
During the development of OPTCON, an IBM AT computer configured with
640 kbyte- RAM and Intel's 80287 math co-processor was used.

2. Fortran, PLOT88, and Math libraries.

3. A monochrome or color graphics monitor.

4. An Epson or LaserJet printer.

Figure A.1 is provided to give the user a broad overview of the basic program -flow of

OPTCON. The blocks outlined by solid lines represent program segments that must be

performed during the initial execution of OPTCON. The blocks outlined by dashed

lines represent program segments that are optional. The numbers that appear to the

left of each block are referred to during in Section 2.d of this appendix.

The remainder of this appendix illustrates the solution to a simple example

problem using the OPTCON program. The intent here is not to focus on the specific

example problem or on its solution but, rather, to focus on the capabilities and use of

OPTCON.

2. AN EXAMPLE -PROBLEM
a. The Second Order Integrator

Consider the continuous time system shown in Figure A.2. The state space

equations for this second order plant are derived by defining the output of each

integrator to be a state. Using Equations 2.7 through 2.10 as a basis, the state

equations become:

-•y(t) = 1 0 x(t) (A .2)

u(t) - fl(xl - rl) + f2(x2 - r2 ) (A.3)
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Figure A.2 Second Order Integrator Signal Flow Diagram

If the system is sampled every T seconds, Equation 2.20 yields:

"-D_ O T2/2) (A. .4)

and Equations 2.21 and 2.22 yield

r [T21  (A.6)
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The preceeding calculations are done simply to allow verification of the PHIDEL

subroutine in Appendix C. This subroutine converts an A and B continuous system to

a o and F discrete system. For instance, assume that the system is sampled at

f = 100 Hertz. This means that T = 0.01. Equations A.5 and A.6 become

-1- 0.0- (A.7)

r m O01 J (A.8)

for the discrete time representation of the second order integrator.

Before proceeding with the OPTCON program, the user is urged to verify that

the system is controllable and observable.

b. Controllability and Reachability

According to Astrom, a system is controllable [Ref. 5: p. 104] only if "it is

possible to find a control sequence such that the origin can be reached from any initial

state in finite time." Thus, controllability is a necessary condition for the regulator

problem. A similar property called reachability is required for the tracking problem. A

system is reachable [Ref. 5: p. 104] only if 'it is possible to find a control sequence

such that an arbitrary state can be reached from any initial state in finite time."

-For continuous time systems, the properties of controllability and reachability

coincide. That is, either a continuous time system is both controllable and reachable

or it is both uncontrollable and unreachable. For a discrete time system, however,

controllability does not guarantee reachability. Reachability of a discrete time system

does guarantee controllability. The reachability of a discrete system is important

because the engineer should not spend a lot of time designing a controller that is

physically impossible to implement.

A simple test is performed to check the reachability of a discrete system. The

(n x nt) reachability matrix, Wr, for an nth order discrete time system with t control

inputs is defined as follows :

Wr - [r or 0)2r ... O(n'l)r] (A.9)
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If the reachability matrix is of rank n, then the system is reachable. In the case of the

example problem

W [12 T (A.10)

Taking the determinant of Wr and setting the result equal to zero, the necessary
condition for reachability is found to be that T e 0. Since an infinite sampling

frequency is impossible to achieve, the system is reachable and it is- reasoniable to
continue with the problem.

c. Observability

In order to take full advantage of the optimal gain schedule, F(k), it is

necessary that all of the states be observable. According to VanLandingham

[Ref. 4: p. 308], a discrete time system is completely observable if it is possible to

determine the initial state, x(0), of the system based on knowledge of the control input,

u(k), and the output, y(k), over a finite number of time intervals. The test for
observability closely follows the test for reachability. First, define the (mn x n)

observability matrix, WO, as

C
CO

Wo= C0 2  (A. 11)
C(V)(n-1)

If the rank of Wo is n, then the system is observable. This implies that all of the
states of the system are available for state feedback. If the system is not completely

observable, then one or more of its states is not measureable. Either the system must

operate without the unobserved states in the feedback path, or an observer must be
designed to estimate the unobserved states. In the example problem, the observability

matrix is

10
0 1

W] (A.12)
I 10

t0 I1
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This observability matrix is of rank 2 and the system is completely observable. Notice

that if the output distribution matrix is

"C -C [1 0] (A.13)

so that only xi is observed, the observability matrix becomes

WO-l .(A.17)

which is of rank 2 provided that T * 0. However, if only x2 is observed, then

C -[O 1] (A.15)

WO = (A. 16)

and the system is not observable regardless of the sampling frequency. A state
observer is needed to give an estimate of the x, state.

d. Solution Using OPTCON

This section is an introductory guide to OPTCON. The second order
integrator problem is used to acquaint the user with the conaands, features, and
limitations of the program. The messages presented in this section are referred to as
"screens' and are surrounded by numbered boxes. Neither the boxes nor the numbers

by which they are referenced are actual features of the OPTCON program. They are
simply used as devices to make the following discussion more understandable.

Messages which are generated by OPTCON appear in standard print. Any responses
which represent keyboard entry by the user are shown in italic print. If the response is
to be y for "yes" or n for "no", then either uppercase or lowercase letters are acceptable.
If the response is to be an integer entry, as in the menu selections, the subprogram
COMPARE is called to verify that tie user has entered a valid integer. If the response
is out of range of the acceptable values, or if the response is not an integer, then the
program repeats the message untth a valid response is entered by the user.
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1. Startin* the Program

The user enters OPTCON by typing optcon on the command line. The

following heading appears

Screen I

OPTCON minimizes the following cost fauotions

J m1UN (XeIN)N H sX(N) + Sum( X'I(k eQ X(k) •UW(k) RO UkA))

The output of the program is the fededb 'gain mitrix, F trnsposes, (F )p
which, when multiplied by the State Vector IX),
yields a scalar ocntrol.fU).

The following recursive equations were derived using dynaio programming,
starting at the terminal time IN) and working badkwards:

(1) F'(k) a -(DEL'Pik-1)ePHI)/(DEL'*P(k-l)OEL + R) F40)20
(2) PSI(k) a PHI + OEL*F'Ik) PSI(O)XO
(3) PWK a PSZ'(k)sP(k-l)0PS1(k) + q + F'(k)*R*F(k) P(O)aH

2. Entering Initial Information

The first entry required is a problem name. This name is used to identify

the output file called OPTFILE which contains all matrices, gain trajectories, and time

response trajectories for each run that the user requests durfig the problem session.

Screen 2

First enter the problem identification I NOT to w"ee d 20 chareaters ).

PROBLEM 10 ........ second order example

Next, the user selects the type of printer that is connected to the operating

system. If graph hardcopies are not to be requested during the course of the problem

session, then the response to this question has no impact on the operation of

OPTCON. If graph hardcopies are to be requested, however, then the answer to this

question sets a flag that allows data to be properly formatted for the printer that is

being used. Unpredictable results are expected if the user attempts to get graph
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hardcopies from a printer that is not selected. In this example, the LaserJet printer is
to be selected.

Screen 3

Seleot the type of printer thet you are using
( Anaeer I or I )

1) EPSON or THZNKJET
2) LASERJET

A. sNEE ............ 2

Now the user enters the order, n, of the system. The maximum order
which OPTCON can accept is eight due to the limitation of 64 kbytes per segment in
the IBM AT microcomputer. The practice problem requires that a 2 be entered here.

Screen 4

Enter the ORDER of the system (up to a). 2

3. Entering the Cost Function

Next, the number of discrete time stages, N, is entered. This number is
limited -to 1000 due to the maximum dimension size of the arrays in OPTCON. The
user should be aware of the relationship:

tf- NAt (A.18)

where

tf - final time of the process

N - pumber of stages over which the • in Equation 2.23
is tobe performed.

At - sampling interval

In the example, let At - 0.01 seconds and tf -1 0 seconds. This requires N - 1000.
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Screen 5

Enter the NUMBER of TIME INTERVALS (N) over which the cost function
is to be minimized. IMUST NOT exceed 1000) 1000

At this point, the weighting elements of the cost function are. to be entered.
Assuming that the user wants to initially create a baseline solution for the problem, a
reasonable starting point is to let all diagonal weighting factors assume a vilue of
unity. The routine to enter the cost function begins with Screen 6.

Screen 6

Does cost function (J) Include the State TRAJECTORY over all stages ?
( Answer lZor 3 )

1) YES...Set Q equal to the IDENTITY Matrix
2) YES...Each diagonal element of Q will be entered seperately.
3) NO...-.Set Q equal to the ZERO Matrix

ANSHER ............

Selecting option I results in the Q matrix being echoed in Screen 7. The

program then advances directly to Screen 11.

Screen 7

The states are weighted equally for the TRAJECTORY over all stages.

The Q Matrix

1.0000 .0000
.0000 1.0000

Selecting option 2 in response to Screen 6 allows the user to enter values
for the diagonal elements of the Q matrix. All off-diagonal elements are automatically

set equal to zero. For the sample problem, assume that the user wants qj1 - 2.4 and

q22 - 5. After entering the value for q11, the user is prompted to enter the value for

q22" Screen 8 results.
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Screen 8

Enter th, elements of the Q matrix.

(State weighting matrix for TRAJECTORY aver all stages)

0(1,1) a ? 2.4
,.02,2) * ? 5

After the user enters all diagonal elements, the matrix is echoed in Screen 9.
OPTCON then advances to Screen I1.

Screen 9

The Q Matrix

2.4000 .0000
.0000 .. 0000

Selecting option 3 in response to Screen 6 sets all elements of the Q matrix

equal to zero. Screens 10 and 11 follow.

Screen 10

The state TRAJECTORY it not Inoluded in your oost funtion.

The 0 Matrix

.0000 .0000

.0000 .0000
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Screen I I involves a loop which allows the user to change any or all of the

elements in the matrix that is currently being processed. This loop is subsequently

referred to in this discussion as "the modify routine."

Screen 11

Do you want to ohm any element of the matrix?

.1) YES.-.e SINGLE element.
ZI YES...the ENTIRE HMtrix.
3) NO

AN R ............

Option 1 produces Screen 12 which allows the user to change a single
element by identifying the row and column of the element to be changed. The row and

column entries must be integers separated by a comma. Assume that the user wants to

change q22 so that it equals 3.

- Screen 12

Wde hl element of the Mhtrix do you want to Change ?
If I Is the RON and J Is the COLUMN,.... enter iJ 2,2

The user is then prompted to enter the new value for the element that is to

be changed. Screen 13 applies.

Screen 13
1(2,2) * ? 3
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If the user entered this situation directly from Screen 7 then the

result is Screen 14.

Screen 14

The Q Matrix

1.0000 .0000
.0000 3.0000

Any other al wsw ? (Anwrm y or n)

If the answer to Screen 14 is y, then OPTCON returns to Screen 12 and

allows changes to be made to individual elements of the matrix. Once the user is

satisfied that that the Q matrix is correct, a n is entered in response to Screen 14. At

this point, OPTCON is ready to accept information relating to the H matrix.
Screen 15 is next.

Screen 15

Does aest function W) rinlude TERZNAL States ?
I Artswer 1,2,or 3 )

1) YES...Set H equal to the IDENTZTY Matrix
V3 YES... Each diagonal element of H will be entered seaerately.
3) NO .... Set H equal to the ZERO Matrix

- All" R ............

The program operation at this point is identical to the operation illustrated

in Screens 6 through 14. The only difference now is that all of the matrix information

applies to the H matrix. Assume that the user has set hi1 - 5 and h22 - 15.

Screen 16 results.

Screen 16

The H Matrix

5.0000 .0000
. 0000 15.0000

Any other chage? (Anser y o n3
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Since this is the desired H matrix, a n is entered and the program advances

to the section in which the user is asked to enter the value for R. Assume the desired
value is to be 15.7. Screens 17 and 18 result.

Screen 17

Enter the value of the scaler R
(Control input weighting factor)

Ru.? 15.7

Screen 18

The mslar R a 13.7
hy changes to R ? (Answer y or n)

The program echoes the value entered and asks if there are any changes. If
there are changes to be made, a y response returns the user to Screen 17. A n response

in Screen 18 indicates that the cost function, J, is now defined completely and Block I
of Figure A. 1 is complete. The program advances to Block 2 of Figure A. I

The user must now indicate if the problem to be solved is in the continuous

time domain or in the discrete time domain. Screen 19 applies.

Screen 19

If you want to reed in A and 5 ietrices for a CONTINUJOUS TIME system
.................................................... Enter 0

If you want to enter PHI and DEL ntricee for a DISCRETE TIME system,
.................. ................................ Enter 1

ANSMR .... i ....... 0

The sample problem is of the continuous type and a 0 is the appropriate
response to Screen 19. Screen 20 follows.
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Screen 20

You will enter the A awd 5 mtrioe".
........ Is this correct T

If a y response is entered in Screen 20, then the program advances to

Screen 22. Otherwise, the message in Screen 21 appears.

Screen 21

You will enter the PHI and OEL matrioe.
......is this correct ?

The program toggles between Screens 20 and 21 until the user enters y to
one of these two options. Assuming that the continuous system is selected, the next
section of the program allows the user to enter the A and B system matrices and the

sampling interval, T.

4. Entering the Continuous Time System Parameters

The elements of the A matrix are sequentially entered as shown
in Screen 22.

Screen 22

Enter the elements of the plant -- trix--A.

All,I) a ? 0
A(L,Z} a ? I
A(Z,l) * ? 0
A(2,2) ? 0

Screen 23 echoes the A matrix and affords the user an opportunity to make

any changes. The modify routine is entered unless the user responds to Screen 23 with
a 3. In the case shown, all entries are correct and a 3 is appropriate.
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Screen 23

The A Matrix (Plant Matrix)

.0000 1.0000

.0000 .0000

Do you wit to change any elament of the matrix?
11 YES1...a SINGLE elmant.
2) YES,... th ENTIRE Matrix.
3) NO

OWR D ............ o

The elements of the B matrix are sequentially entered as shown

in Screen 24.

Screen 24

Enter the elements of the distribution matrix--B.

B(1,) * ? 0
B(1,1) • ? I

Screen 25 echoes the B matrix and once again allows the user to enter the

modify routine if necessary.

Screen 25

The B tstrix (Distribution Matrix)

.OOCO
1.0000

Do you wmnt to ohmge any eleamnt of the matrix?
1) YES.... SZINGLE element.
2) YES...the ENTIRE Matrix.
3) NO

AMSER ............ 3

Since no changes are needed, the program now prompts the user to enter

the sampling interval, T. The correct answer for the sample problem is entered
in Screen 26.
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Screen 26

Enter the SAMIPLE INTERVAL ..... DT ? ? 0.01

As usual, the response is echoed and the user is allowed to make changes

until the correct value is entered. Screen 27 applies.

Screen 27

The SAMPLE INTERVAL OT * .0100
Any changes to the SAMPLE INTERVAL ? (Answer y or n) rP

5. The Optimal Feedback Gains Calculated

The program now has all of the information necessary to calculate the

optimal gain schedule. The first step that OPTCON must perform is to convert

the A and B matrices to the corresponding 0 and r matrices. The subroutine

PHIDEL in Appendix B performs this conversion. The resulting 0 and r matrices are
not displayed on the monitor. These two matrices are, however, recorded in the

OPTFILE listing for the user's convenience. If a discrete time system is initially

selected in Screens 19 and 20, then the PHIDEL subroutine is bypassed. In either
case, the gain schedule is now calculated using Equations 2.28, 2.29, and 2.30. This

completes Block 3 of Figure A. 1. As block 4 of Figure A. I is entered, the user may
choose to view the gain schedule in tabular form. Screen 28 applies.

Screen 28

Do you ment to see the gain schedule table an the scree ?
(Answsr yor n) Y

Since the user wishes to view the gain schedule table on the monitor, a y is

entered in Screen 28. The user should remember two points before choosing to list the

gain schedule on the screen:
1. The gain schedule is automatically entered into OPTFILE regardless of the

user's response in Screen 28. If the user wants to record the exact values of the
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gains, this output i*le may be examined later using the BROWSE, COPY,
EDIT, PRINT, or TYPE commands in DOS.

2. A total of N lines of data are listed on the monitor when tabular output is
requested in Screen 28. If N is on the order of several hundred or more, the
design procedure is likely to lose momentum due to the lengthy delay involved
in sending such a large array to the monitor.

In order to illustrate the form of the data generated, Screen 29 lists a
portion of the gain schedule table. Only the rurst ten time intervals are listed here for
brevity. The actual sample problem lists a table with 1000 rows.

Screen 29

NEC REAL
TIME TIME
STEP INDEX F(1) F(2)

1 1000 .0000 -. 0100
2 999 -. 0002 -. 0200
3 996 -. 0004 -. 0300
4 997 -. 0008 -. 0400
5 996 -.0012 -. 0500
6 995 -. 0018 -. 0600
7 994 -.0024 -. 0700
a 993 -. 0032 -.0600
9 992 -. 0040 -. 0900

10 991 -. 0050 -. 1000

Block 4 of Figure A. I is now complete and Block 5 is initiated. The next
option available to the user is to have OPTCON generate graphs of the optimal gain
trajectories. If graphs are not desired, the user may answer n in response to Screen 30
and the program advances to Screen 32. If plots of the gain trajectories are desired,

then a y response is required in Screen 30.

Screen 30

Do you wmnt to see the gains plotted ?

(Answer y or n) y
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At this point, the program calls subroutine GRAPH. An internal flag is set

so that the gain trajectory plots are sent to the monitor. A separate plot is generated

for each gain trajectory. Thus, for an nth order system, there are n separate gain plots

produced. As each graph is generated on the screen, a pause is inserted so that the

user may conveniently examine each one. Striking any key removes the current graph

from the monitor and Screen 31 follows.

Screen 31

Do you went a hurcdopy of this plot ? ( Amnwr y or n ) g

If a n is entered in Screen 31, then the program begins to generate the next

gain trajectory plot for monitor output. By answering y in Screen 31, the user will

automatically be provided with a hardcopy of the gain trajectory. A single hardcopy

graph requires approximately 120 seconds on the Epson printer and approximately 90

seconds on the Laserjet printer. Because of the superior quality of the graphs available

from the later, all graphs contained in this thesis are generated on the Laserjet printer.

As soon as the hardcopy is complete, OPTCON begins to generate the next gain

trajectory plot for monitor output. It is important to note that the gain trajectories are

plotted against the real time discrete index, k. This means that the first gains calculated

are those on the rightmost edge of the plot while the first gains implemented are those

on the leftmost edge of the plot. Thus, the term 'steady state' as it applies to optimal
feedback- gains refers to the zero-slope property of the left side of the gain trajectory

plot. The two gain trajectory plots for the example problem are shown in Figures A.3a

and A.3b. When all n gain plots have been displayed on the monitor and/or have been

printed as hardcopies, the program continues with Screen 32.

Screen 32

Do you mint to dhmtns the NiJER OF STAGES ?

(Anear y or n) n

If the user is not satisfied with the initial choice of N, then a new value

may be entered at this time by answering y in Screen 32. OPTCON presents Screen 5

for this purpose and subsequently returns to the sequence beginning with Screen 28.
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The most likely reason for the user to take advantage of the option in
Screen 32 is that the gain trajectories do not reach steady state values in the allotted

number of time intervals. By increasing N, the user may be able to force the gains to
reach steady state. Since the gain trajectories in Figures A.3a and A.3b demonstrate

steady state properties, there is no need to change N in Screen 32.
6. The Time Response

Block 6 in Figure A.1 involves calculation of the time response of the
system based on the optimal gains computed in Block 3. The first option available to

the user in this section is the phase plane graph of xI verses x2. Screens 33 through 36
represent the program sequence that results when a phase plane is requested with the

following constraints :

t. M 10 seconds

xI(O) - 0 - Initial condition on state xl
x2(0) - 0 - Initial condition on state x2

r(1) - I - Step forcing function on state x,

r(2) - 0 - Ramp forcing function on state x2

Screen 33

Do you went to s*s a PHASE PLANE of X1 vs. X2 ?

(Aniiwr y or n) y

Screen 34

For how my mand ? 10
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Scrmen 35

Enter the elesiments of the INZTZAL STATE vector - )•0)

Xl(0) a ? 0
XZO) a ? 0

Screen 36

Enter the elements of the COMMAND INPUT veotor-R.

RI1) 0 ? Z
R(2) 0 ? 0

The next option available is to select the method by which the optimal

gains are to be implemented. Two choices are available.

Screen 37

Select a gain schejule.... ( Anser 1 or 2 3

1) Use STEADY STATE gains wer all step.
2) Use DYNAMIC gains

- SH ER ............

If the first option is chosen, then the state trajectories are calculated using

Equations 2.14 through 2.17 such that the last gain matrix calculated, F(N), is

substituted into Equation 2.17 during every cycle of the iteration process. The user

must be aware of this procedure when selecting option I in Screen 37 because

OPTCON makes no attempt to verify that the gains have indeed reached steady state.

If the user selects option 1 when the gains do not exhibit steady state properties, then
the solution is not optimal. If the gain trajectories do arrive at steady state prior to the
NO' stage, then selection of option I in Screen 37 may be appropriate. The time

response obtained in this fashion represents the behavior of the system using a fixed

gain feedback scheme.
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The second option in Screen 37 causes the feedback gains to be
dynamically implemented in the reverse order that they are calculated. The user is
cautioned that such implementation may not yield an acceptable time response. In the
example problem, the gains reach steady state after approximately 500 stages. This
corresponds to tr - 5 seconds when At - 0.01. Consider the case of a sampled system
which has a transient time response longer than 5 seconds. The use of a'dynarnic gain

schedule would be disasterous in this situation. B~ecause the gains progress towards
zero as t.approaches 5 seconds, the feedback channel is gradually.eliminated from the
system. The slow system, however, does not have. enough time to reach steady state
before the feedback gains go to zero. The error signal increases without bound and the
system rapidly becomes unstable. Two simple solutions for such a situation are :

I. Increase the number of time intervals, N. This causes the steady state portion
of the dynamic gain schedule to become more predominate.

2. Implement steady state gains instead of a dynamic gain schedule.
After a gain schedule is selected in Screen 37, OPTCON begins to compute

and save the state trajectories for x, and x2 using Equations 2.14 through 2.17. The
message in Screen 38 informs the user that the program is still executing.

Screen 38

Calculating Plotting Date

After the state trajectories are computed, Screen 39 prompts the user.

Screen 39

READY TO DISPLAY DRAWING
Strike any Key to continua.

The monitor is cleared upon any keystroke and the x, verses x2 phase plane
subsequently appears on the screen. The graph remains on the screen until the user

strikes any key. The monitor then clears and Screen 40 appears.
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Screen 40

Do youwant a e'mrdoopy of this plot ? ( Anuer y orn)

If a n is entered in Screen 40, then the program advances to Screen 41.

Otherwise, the message in Screen 38 reappears. After a short delay, a hardcopy graph

of the phase plane is automatically generated on the printer. See Figure A.4. The

programý then advances to Screen 41.

Screen 41

Do you went to sae a time response of your system ?

(Answer y or n)

If a n is entered in Screen 41, then the first run of OPTCON is complete.

The program advances to Screen 44. If a y is entered in Screen 41, then the program

prompts the user to enter parameters for the time response. Refer to Screens 34

through 37. It is not required that the user entcr the same information for the time

response that was entered for the phase plane. OPTCON recomputes the time

response on every run. It is suggested, however, that the user carefuily note the

parameters that are entered for each run. Initiai conditions and command inputs are

recorded in the OPTFILE but this information does not appear on the graphs. After

the gain schedule is selected in Screen 37, OPTCON begins to compute and save the

state trajectories. When the calculations are complete, Screen 42 appears.

Screen 42

Do yow went to as the titu reopons table on the scren ?

(Ans"er y or n)
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A n response causes the program to begin generating data for the time

response plots. The user is cautioned that answering y in Screen 42 may result in a

lengthy delay as the N rows of data are scrolled onto the monitor. The option to view
this data on the monitor exists so that the user may gather exact numerical data
without exiting OPTCON to examine the OPTFILE. A short segment of the tabular

data appears in Screen 43. In the case of the example problem, this table continues
until 1000 rows are displayed.

Screen 43

REAL
TIMIE REAL
INDEX TIME X(1) X(I)

1 .0100 .0000 .0000
2 .0200 .0000 .0099
3 .0300 .0002 .0197
4 .0400 .0004 .0292
5 .000 .0008 .0386
6 .0600 .0012 .0479
7 .0700 .0017 .0170
a .0800 .0024 .0619
9 .0900 .0031 .0746

10 .1000 .0038 .0832

When the last row of the state trajectory table appears on the monitor, or

if tabular output is not selected in Screen 42, then OPTCON begins to generate data

for the state trajectory plots. Each state is plotted verses real time. During the
calculations, the messages in Screens 38 and 39 prompt the user. State x1 is plotted
first and the nth state is plotted last. The user may examine each individual graph on
the monitor. By striking any key, the user clears the graph fromri the screen and the
message in Screen 40 reappears. If the user does not desire a hardcopy, then a n

response allows the program to process data for the next time response graph. If a
hardcopy is desired, then a y is entered in Screen 40 and the procedure follows exactly
as before. See typical time response plots in Figures A.Sa and A.5b. After all n states
are plotted, the program com'letes Block 8 in Figure A. I. The first run of OPTCON is

now complete and the user must answer y in Screen 44 in order to remain in the
program. If a n is entered in Screen 44, then execution terminates and the user is

immediately returned to the DOS environment.
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Screen 44

This onoludes the optimal oantrol program (OPTCON).

Do you want to run the program again? (Answer y or n) 3

Assuming that the user desires to remain in OPTCON, a y is entered in Screen 44. The

next section of the program is referred to as "the main menu' and is demonstrated
in Screen 45.

Screen 45

SELECT ONE OF THE FOLLOWING OPTZONSs

1) Change the NUMER of STAGES .................... N
"2) Change the TERMINAL state weighting matrix ..... H
3) Change the TRAJECTORY state weighting matrix...O
4) Change the CONTROL weighting factor ............
5) Change the present 'A and B matrices
6) Change the SAMPLE INTERVAL .................... DT
7) Change the present PHI and DEL matricas
8) Input an entirely NEN SYSTEM
9) NO CHANGES...RUN

101 EXIT the program

SELECTION... ( MLUT be a number betmen 1 and 10 )......

It is not necessary to describe in detail the operation of the main menu.

The user should enter the integer value that applies to the particular modification to be

made. If one of the first seven options is selected, the program responds as follows:

1. Echo the current value(s) of the parameter(s) to be modified.

2. Allow the user to keep or modify the selected parameter(s).

3. Return to the main menu for further modification, continued execution, or
termination of the program.

If option 8 in the main menu is selected, then OPTCON returns to Screen 4

and allows the user to enter new information for all parameters. In this case, no

previous values are remembered by the program and execution proceeds just as if this

is the first run. The OPTFILE, however, retains all information from any previous

runs.
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If option 9 is selected in the main menu, then the current values for all

system and cost function parameters are written into OPTFILE to signal the start of a
new run. Program execution begins with the gain calculation sequence represented by

Block 3 in Figure A. 1. Screen 28 applies. The user may rapidly skip through the

intermediate steps of the program by answering n to several consecutive questions.

For instance, suppose that the user changes a single parameter by selecting one of the

first seven options in the main menu. In order to determine the effect of the changed

parameter on the time response of the system, the following sequence of messages and

responses is used.

Screen 46

SELECT ONE OF THE FOLLOMINN oPrzaws,

1) Change the NUMER of STAGES .................... N
2) Change the TERMINAL state weighting matrix ..... H
3) Change the TRAJECTORY state weighting matrix...4
4) Change the CONTROL weighting factor ............ R
5) Change the present A and B matrices
6) Change the SAMPLE INTERVAL .................... OT
7) Change the present PHI an DEL matrices
8) Input an entirely NEN SYSTEM
9) NO CHANGES... RUN

10) EXIT the program

SELECTZON... ( MUST be a nmber bebomen 1 and 10 )...... 9

Do you want to see the gain schedule table an the soreen ?

(Arfaier y or n) n

Do you want to see the gains plotted ?

(Answer y or n) n

Do you want to see a PHASE PLANE of X1 .vs. X2 ?

(Answer y or n) n

Do you want to see a tim response of your system ?

(Answer y or n) y

At this point, the user may examine the system time response and evaluate

the impact of the newly modified parameter.
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By selecting option 10 in the main menu, the user is allowed to exit the

program. The message in Screen 44 reappears as a safety mechanism to prevent

inadvertant ejection from the program. If y is entered in Screen 44, then the main

menu reappears and program execution continues. Otherwise, the program terminates

and control is returned to DOS.

7. OPTCON Summary

The OPTCON program is designed specifically so that the user can easily
modify problem parameters and rapidly obtain information about the effects of those

changes.' Tabular and graphical information is available both on the monitor and in

hardcopy form. In an effort to make the program user-friendly, four techniques are

employed :

1. Menu driven options prevail.

2. User input is screened for valid format.

3. User inputs are echoed on the monitor.
4. All data is written into an external file for later examination.

The OPTCON program is quite useful as an interactive design tool for optimal control

systems. Extensive use is made of its assets during the design of an optimal controller

for the AROD in chapter three.
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APPENDIX B
OPTCON MAIN PROGRAM LISTING

The following code is written in MICROSOFT Fortran and is intended to be

used on an IBM compatible system. This is the main program for OPTCON and must

be linked with the subroutines found in Appendices C and D. In addition, the Fortran,

Math, and PLOT88 libraries must be linked during the creation of an executable file.

SNO floatcalls
NOdebug

C
C LL63.FOR LAST MOD 12JULY87 OK SDL
C NEW selective state plotting
C NEW state table formatting
C

COMMUON /BLK1/ A,B,PHII.DEL
COMMON /BLK2/ BEGTIM,FINTIM,NPTS,

+ XNAMLYNAMLPNAMIL,PNAM2L ,PNAM3L
COMMON /BLK3/ VTIME VTIHSS,VY,VYSSVXXSS,VXYSS
COMMON /BLK4/ KFINAL ,NSTAGE ,NSTP1,ORDERN G.NSKEDUSERG;N,MFEG;,

+ INPUT,DT,AVG,AVG2,MAXVAL,NfNPTS
COMMhON /BLK5 / XGIAME, YNAME ,PNAME1 ,PNAME2, PNAME3
INTEGER*2 OPTION ,ORDERN, IGOOD, CODE ,NSTAGE ,NSTP1 ,KFINAL, KPRIHE,

+ GNSKED,NPTS,ZOPORT,MODEL,XG1AML,YNAML,NCHARl ,NCHAR2,
+ NCHAR3 ,STVAR, I,J, SKIP OK SYSTEM,GAIN,DTFLAG,PLTYPE,
+ CHNGN, SCREEN,NINPTS ,NiNP~l,ORDNP1 ,GAINCH,GNSKD3,
+ STPLOT,PLOTCH ('G( )
pEAL*4 PSI(8,8) P(8,8 ~FRA 8 G(8,8)

+ :6d~8,(~8 6 B ý2 ~8
;F H(85 5O8,)X'1 146 Xk14hl DELINP(8 1) INPUT81

+ PHIX8 ,j1),PHIE 8ý DELROROWF 6S ),PNEG UT 06il
+ VY(lOOZ ), TIME(10025,#M,TF INI DTTIM, PNAM1LPAM

+ PNAM3L,VYSS(9) VTIMSS()X0XSS(9,XS(9,V()AVG2(85,
+ MAXIM,MWA(b),UsERGN( (8)
CHARACTR* TEMP
CHARACTER*3 ANS
CHARACTER*20 NAME
CHARACTER*30 XNAME YNAME
CHARACTER*51 PNAMEi PAENAE
CHARACTER*5 HDG 8),NM2PAE
CHARACTER*4 HMG()

HG 1 : 'F' 1
HDG 2 * F' 2
HDG; 3 -'F'' 3'1
HDG 4 -'F'' 4'1
HDG 5 I F'' 51
DG 6 * F'' 6

HDG 17 I F'' 7
HD 8 1 'F' 8
HDG I'XlI
HDG2 2 = 'X 2)'
HDG2 3 = 'X 3)'
HDG2 4 = 'X 4)'
HDG2 5 a 'X 5)'
HDG2 6 'X 6)'
HDG2 7 - X17)
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FD02(8) - ,x(8),C OPEN(9,FILE='OPTFILE',STATUS='NEW')

C
C

** * PRINT OPTCON HEADING and INPUT PROBLEM ID *

C
WRITE (*,2000)
WRITE(*,2010)
PAUSE
WRITE(*,2015
READ *,202o),END.153O)NA.

C

C*•***•******** HEADING INFO FOR THE OUTPUT FILE

C
WRITE 9 (9,2030)
WRITE 9,2040)
WRITE 9,2050)NAME
WRITE 9,2030)

C

ENTER PLOTTER/PRINTER MODEL TYPE

C
5 WRITE(*,2055)

READ (*,2070)TEMP
CALL COMPARE(TEMP,1,2,CODE,IGOOD)
IF (CODE.EQ.0)GOTO 5
IF(IGOOD .EQ. 1)THEN

IOPORT - 0
MODEL a 1

ELSE
IOPORT a 0
MODEL - 60

ENDIF
C

C************ INITIALIZE B DEL USERGN MATRICES

C
DO 6 I = 1,8

DO 6 J - 1,8
B(I,J1 - 0.0
DEL(I,J) =0.0
USERGN(I,J) r 0.06 CONTINUE

C

ENTER THE ORDER OF THE SYSTEM*********************************************

C
RESET FINAL ,GNSKED,GAINCH,GNSKD3 *

10 FINAL = 0
GNSKED = 1
GAINCH = 0
GNSKD3 a 0
WRITEJ(*2060)
READ (*,2070 )TEMP,
CALL COHPARE(TEMP, 18,CODE,IGOOD)
IF(CODE.EQ.0) GOTO 16
ORDERN • IGOOD
ORDNPI * IGOOD + 1

C

*NTER THE NUMBER OF CONTROL INPUTS *********************** ***************W**** P************************
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c 13 WRITE(*,2075)
READ (*,207o )TEMP
CALL COHARE(TEMP,l 0,CODEIGOOD)
IF (CODE.EQ.0) GOTO l
NINPTS a IGOOD
NINPPI = IGOOD + 1

C
ECHO NINPTS

C
WRITE(*,2076)NINPTS

C
MODIFY NINPTS IF NEEDED

C
16 WRITE(*,2077)

READ (*,2190)ANSWER Tl
IF (ANSWER+.! 'N'.OR.ANSWER.EQ'n''GO0 1
IF(ANSWER.E8.'Y'.OR.ANSWER.EQ yGTO 15
GOTO 16

C
C***** SKIP COST FUNCTION ENTRY IF NUMBER OF CONTROLS .GT. 1
C

IF(NINPTS .GT. 1) THEN
GNSKED zi3
GOTO 340

ENDIF

ENERTH NMBROF TINE INTERVALS ****

C
20 WRITE(*,2080)

READ (*,* )NTAGE
IF (NSTAGE G~T. 1000)GOTO 20
NSTP1 - NSTAGE + 1
IF (CHNGN .E? 1) GOTO 780
IF (FINAL .EQ 1)I GOTO 1520

C
C***************INPUT THE********0****MATRIX*********

C
30-LOOP = 0

WRITE (*,2090)
READ (,70)TEMP
CALL COMPAv.E(TEMP,l 3,CODE,IGOOD)
IF (CODE.! Q.O) GOTO 36
OPT IOll IGOD
GOTO(40,50,60) OPTION
GOTO 30

40 WRITE(*,2100)
GOTO 80

50 WRITE(*,2110)
GOTO 80

60 WRITE(*,2120)
80 DO 90 1 = 1 ,RDERN

DO 90 J = 1 ORDERN
IF( I Q.J THEN

IF (OPT IO)N .E I, Z 1.0
IF (OPTION .E IJ Lff 0.0
IF (OPTION .E -2 N

WRITE * 130)1 I

ENDIF~~

ELSEENIRA ,

SNDI$I'J) 0.0
90 CONTINUE

C
ECHO THE Q MATRIX
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C
100 CONTINUE

WRITE (*,2140)
DOl 10 imi RDERN

110 WRIE(*~ 215b)(F~I6 JpJa1 IORDERN)

MODIFY THE Q MATRIX IF NEEDED'~
C

120 WRITE(* 2160)
READ(ý,2070 )TEMP
CALL COMPARE(TEMP 1 3 CODEIGOOD)
IF (CODE.EQ.O) GOTO'lO
OPT ION = IGOOD
GOTO( 30 50,160)OPTION

C .GOTO 120
C************ CHANGE ONE ELEMENT OF THE Q MATRIX

C
130 WRITE(* 2170)

IFI . .1.R IG.RE OR. J.LT.1 .OR. J.GT.ORDERN)GOTO 130

READ (*12*J)Q&J

WRITE ( 10
DO 140 tu1,ORDERN

140 WRITE (*,2150)((J)J1,REN
150 WRITE (*,21 80) (,)J=,REN

READ (*4,2190 )ANSWER
IF (ANSWER.EQ .'N' .OR.ANSWER.EQ.*gn4)OTO 160IF (ANSWER.EQ .'Y' .OR.ANSWER.EQ .ly') GOTO 130
GOO 10 o

C160 IF(FINAL.EQ.1)GOTO 1520

INPUT jHE H MATRIX

C
170 LOOP - 0

WRITE (*,2200)
READ *27 TEMP
CALL COMPA(TEMP,1 3,CODE,IGOOD)

- -IF(CODE.EQ .O)GOTO 140
OPT1IN = I GOOD
GOTO(180, 190,200) OPTION
GOTO 170

180 WRITE(*,2210)
GOTO 210

190 WRITE(*,2220)
GOTO 210o

200 WRITE( * 2230)
210 DO 220 1f 1,ORDERN

DO0 220 J = 1 ORDERN
IF(I J ) THEN

IFiTION.E.)
IF (OPTION .EQ.3)H0
IF OPTION E.E 2T

WRITE(*,*2)401f j
READ (*,)H(

ENDI F
ELSE

ENDINP') 0.0
220 CONTINUE

C
ECHO THE H MATRIX

C
230 CONTINUE

WRITE (*,2250)
DO 240 1.1,OaDER1;
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240 WRI E(* 2150)(H(I J) Jul RN

C iF(LOOi EQ. 1) 6646J1071d6RD
MODIFY THE H MATRIX IF NEEDED

C
250 D ( 207 )TEMP

CA4L COMPARE(TE)XP 1 3,CODE,IGOOD)

GOTO(260, 190,290 )OPTIOtN
GOTO 250

C
C***********~CHANGE ONE ELEMENTZ OF THE H MATRIX

C
260 WRITE(* 217)

IF(I.LT.1 .6R. I.GT.ORDBRN .OR. J.LT.1 .OR. J.GT.ORDERN)GOTO 260
WRTE'*,2240 i,,

WRITE *2
DO 270 f!1,fORERN

270 WRITE (*,'2150) (H(I,J),J.1,ORDERN)
280 WRITE (* 2180)

READ'(A 2190)ANSWER
IF (ANSWER.EQ. IN'I OR. ANSWER EQ8.k I n GOTO 290
IF (ASWER.EQ IY' .OR.ANSWER:EQ. 'y )GOTO, 260

0OT 280
C290 I(NAL.EQ.1)GOTO 1520

INPUT R

C
300 WRITE(*2260)

ECHO R
C

310 WRITE(*,2270)R
C

MODIFY R IF NEEDED
C

320 WRITE(* 2280)READ (A~,219 ) ANSWERl
IF(ANSWER.EQ .'N'OR.ANSWER.EQ.'n')GOT0 330
IF (ANSWER.EQ. 1Y 1.0R.ANSWER.EQ.SyI)GOTO 300
GOTO 320

C330 IF(FINAL.EQ.1)GOTO 1520

CHOOSE TO ENTER EITHER A
~ CONTINUOUS TIME SYSTEM OR A

DISCRETE TIME SYSTEM

C
340 WRITE(,*2 290)READ (20Q)TEMP

CALL COMPARE (TEMP,0,1,CODEIGOOD)
IF (CODE.EQ.0) GOTO 340
SYSTEM m IGOO

C
IF(SYSTEM)350 ,350, 360

350 WRITE(*,2300)
READ (* 2190)ANSWER

I(NWhR.EQ .'Y'.OR.ANSWER.EQ.'y')GOTO 370
SYSTEM u 1

360 wRrTE(*,2310)
READ (* 2190) ANSWER
IF(ANS*R.EQ .'Y'.OR.ANSWER.EQ.'y')GOTO 590
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SYSTEM m 0
GOTO 350

C

INPUT THE A MATRIX

C
370 WRITE(*,2320)

DO 380 I1. IRDERN
DO 380 Jml,ORDERN

30WRITEý*J31
30CONTINUE

C
C************* DO NOT ALLOW CHANORS TO A and 8
C~*~'~~******** IF A DISCRETE TIME SYSTEM WAS ENTERED

C
390 CONTINUE

IF(SYSTEM, 2 . 1)THEN

READ -*'2O738ýTEMP
GOTO WSO

ENDIF
C

ECHO THE A MATRIX
C

WRITE (* 2340)
DO 400 ±1.,ORDERN

C400 WRITE(*,2150)(A(I,J),Jnl,ORDERN)
MODIFY THE A MATRIX IF NEEDED

C
410 WT(/*A2160)

READ (' 207 0)TEMP
CArL COKPARE,(TEMP 1 3 CODE,IGOOD)
OP ION a IGOOD
GOTO(420,370, 450 )OPTION

GOTO 410

C***********~*CHANGE ONE ELEMENT OF THE A MATRIX ******
C.

420 WRITE( (2170)

IF (I. LT.1 -6R. I.GT.ORDERN .OR. J.LT.1 .OR. J.GT.ORDERN)GOTO 420
WRITE* (2330'NI J
READ (*:* A~i
WRITE (*! 240
DO 4301 f1 OhERN

430 WRITE (*,2150) (A(I,J),J1I,ORDERN)
440 WRITE( (A 2180)

READ ~2190 )ANSWER T 5
IF( NSWR.E8.'N'.OR.ANSWER.EQ.'n''GOT45
IF (AN5WER.E .'Y' .OR.ANSWER.EQ~l GO 420
GoTo 440

C450 IF(FINAL.EQ.1)GOTO 480

***INPUT THE B ATRIX

C
460 WRITEX*, 2350)DO 470 1.1, ORDERN

DO 40J - 1,NINPTS
WRITE (*,2360) IREAD(*)B(,5)

470 CONTINUE
C

ECHO THE B MATRIX
C
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480 CONTINUEWRITE(• 23701
DO 490*. •,0DERN

490 WRITE(*,2l b)(B(I,J),Ju1,NINPTS)

MODIFY THE B MATRIX IF NEEDED *
C

500 WRITE(* 2160)
READ (&, 2 07 )TEMP
CALL COMPARE(TEMPI 3,CODE,IGOOD)
IF(CODE.EQ.O0GOTO 560
OPTION = IGOOD
GOTO(510,460,540)OPTION

GOTO 500
C
C**************** CHANGE ONE ELEMENT OF THE B MATRIX *
C -

510 WRITE(* 2170)READ (4r*)I J,
IF(I.LT1. . 6 R. I.GT.ORDERN .OR. J.LT.1 .OR. J.GT.NINPTS)GOTO 510
READ *261JWRITE 237

DO 520 i1.ORDERN
520 WRITE (*2150) (B(IJ),J-1,NINPTS)
530 WRITE( *2180)

READ ,2190 )ANSWER
IF (AN.ANS.EQ WEREQ.nGOTO 540
IF (ANSWER.E. YI.OR.ANSWER.EQ. ) GOTO 510
GOTO 530

540 IF(FINAL.EQ.1)GOTO 1520

* THE SAMPLE TM
********************************* ******** * **** * * *** ***** *

C
550 WRITE(,* o23804READ (*,*)DT

DTiFLAG d
C
C********* IF A DISCRETE TIME SYSTEM WAS ENTERED **********
C~**************~** AND NO VALUE FOR DT HAS BEEN ENTERED

THEN PRINT OUT A MESSAGE
C

560 IF(DTFLAG .o. O)THENWRITE *.--3a85)
READ (* 2070)TEMP
GOTO 152o

ENDIF
C

ECHO THE SAMPLE TIME .... DT
C

WRITE(*,2390)DTC
MODIFY THE SAMPLE TIME IF NEEDED

C 570 WITE(, 24002
READ ( ,2190)ANSWER

IF (ANSWER.EQ.'NI.OR.ANSWER.EQ.'n')GOTO 580
IFF(ANSWER.EQ .'Y'.OR.ANSWER.EQ.'y')GOTO 550
GOTO 570

C

* CONVERT A and B TO PHI and DEL************************* ********* ************* *** *** * * *******

580 IF(SYSTEM .EQ. 0) THEN
CALL PHIDEL(DT,ORDERN,NINPTS)

ENDIF
IF(FINAL.EQ.1)GOTO 1520
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GOTO 760
C

C
590 CONTINUE

600WRT
DO0 10m., ORDERN

DO 610 Jml ,ORDERN
WRITE (*2420IJ
REA (*#*)Pj.(o (±Jj)

610 CONTINUE
C

c*~*~~*****~',** DO NOT ALLOW CHANGES TO PHI and DEL
C'~***~****~** IF A CONTINUOUS TIME SYSTEM WAS ENTERED

C
620 CONTINUE

IF (SYSTEM .EQ. 0 )THEN
WRITE(*,z425)
READ (* 2070) TMP
GOTO IS~O

ENDI F
C

ECHO THE PHI MATRIX
C

WRITE(*t2430)
)00 630 1~ ORDERN

C630 WRtITE(*,215b)(PHI(I,J),,Jn,ORDERN)
COIYTE PI MTI FNEE

MOICTE PI MTI FNEE
C 4 RT( 10

64 RTEADA2 160)TM

C.ýL COMPARE(TEMP1, A3,CODEIGQOD)
IF (CODE.EQ.0) GOTO 640OP ION = IGOID
GOTO(650, 600,680) OPTION

GOTO 640
C

C************CHANGE ONE ELEMENT OF THE PHI MATRIX
C -

650 WRT( 170)

IFI :1 .6R. I.GT.ORDERN .OR. J.LT.1 .OR. J.GT.ORDERN)GOTO 650

WRITE *2430
DO,660 ±u1,ORDERN

660 WRITE (*,2150) (PHI(I,J),Jnl,ORDERN)
670 WRITE (*2180)

READ (A,2190)ANSWER
IF (ANSWER.EQ .N .OR.ANSWE:R.EQ.l'n) GOTO 680
IF(ANSWIL.EQ.'Y'.OR.ANSWER.EQ.' y')GOTO 650
GOTO 670

C680 IF(FINAL.EQ.1)GOTO 710

INPUT THE *REL *MATRIX

C
690 WRITE(*40

DO 70 Iu1, ORDERN
DO 700 J*1DNINPTS

WRITE0(,2450) J
ROAD (*,*)DEiLt(ij)

700 CONTINUE

ECHO THE DEL MATRIX
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C
710 CNIU

DO? 720 to, DERN
C720 WRITE *,215b) (DEL(I,J), Jnl,NINPTS)

COIYTE DL MTI FNEE
C

73 AD ý,207%1)TEMP
CALL OMPARE(TEMP 1 3,CODE,IOOOD)
IF(CODE.EQ.0) GOTO 7S0'
OPTION a IGOD
GOTO(740, 690 .770 )OPTION

GOTO 730
C

SCHANGE ONE ELEKENT OF THE DEL MATRIX
C

740 WRITE(* 2170)

IF 1.T 1. 1 .6R. I-GT.ORDERN .OR. J.LT.1 -OR. J.GT.NINPTS)GOTO 740
RTES 2450)Z
RED, (**)DEL~fj)

WRITE (* 2460
DO0751 1 fu0 DERN

750 WRITE (* 215b) (DEL(I,J),Jul,NINPTS)
760 WRITE(*'A2180~ AsE

IF I j''O.NSE.Q':GT 770
IF (ANSWER.EQ.'Y'.OR.ANSWER.EQ.iy GOTO 740
GoTo 760

C770 IF(FINAL.EQ.1)GOTO 1520

~~ WRITE ALL CURRlENT INFORMATION TO THE
OUTPUT FLI

C
*780 FINAL a 0

WRITE(9,2030)
WRITE (9,2470) ORDERN
WR TE (9 2475) NINPTS

---IF (GN iiD .EQ 3) GOTO 805
WRITE(j 9 ,2480 )NSTAGE
WRITE (912140
TRACEQ = 0.0

DO 790 Iml,ORDERN I!
790 WRITE (9 2490)(Q J),Jnl ,.ORDER

WRITE (9,2150)
DO 800 1=1,ORDERN

800 WRITE (9 2490) (H(,JJ=,REN
WRITE N 2270 )R IJuREN

805 (FSYST 810,810,840
810 WRITE(9, 2 40)

DO 820 1-1 ORDERN
820 WRITE (9,2496) (A(I,J),J-1.,ORDERN)

WRITE( 2370)
DO 80 I1ODERN

830 WRITE (9,249d6)(B (,J),,J-1,NINPTS)
WRITE ( 2390) DT

840 WRITE(9 2410)
DO MO0 1-1 ORDERN

850 WRITE (9,249d) (PHI(I,J),J=1,ORDERN)
WRITE (9,2460)
DO 860 fIm ORDERN

860 WRITE (9 2440)(DEL(I,J),Jm1,NINPTS)
IF(GNS2D E . 3) THEN

C******* NO OTIMAL GAINS ARE TO BE CALCULATED
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GOTO 1010

IF(TRACEQ'70 o70,880
870 WRITE (9,S00)

PNAM 2 I (Minimum TERMINAL STATES Control)'
PNAM2Lu 33
GO TO 890880 WRITE (92510). • .PN8TE2S I Minimization over ALL STAGES)'

PNAM2L= 30
C

INITIALIZE MATRICES PRIOR TO¢**** **** ***** CAL ULA TIN G OPTI MA L GA IN S ** * *************

C
890 tONTINUE

DO 900 IwlORDERN
EMHI) : 0.0

DO 900 Ju1,ORDERN
GM(I,J) a 0.010.1M(1,3) • 0.0

900 P(IJ).H( ,Ja)

C
C********* DO YOU WANT TO SEE THE GAINS TABLE ON THE SCREEN ? *
C

WRITE (*,2515)
READ (*,2190)ANSWER

IF(ANSWER.EQ. N'.OR.ANSWER.EQ.'n' )SCREEN 0
IF (ANSWER.EQ .'Y •.OR.ANSWER.EQ. y) SCREEN 1C

PRINT HEADING FOR OUTPUT TABLE
OPTIMAL GAINS

C
IF(SCREEN .EQ. 1)THEN

WRITE (*,2520) (HDG(I),I- ,ORDERN)
WRITE (*2030)

ENDIF
WRITE (9, 2520)(HDG(I),I=1,ORDERN)
WRITE (9,2030)

C************** LOOP TO ITERATE THE RICATI EQUATIONS *****C

DO 1000 KK=1,NSTAGE
KREAL = NSTP1 - KK
DEN=O0.
DO 910 Iwl,ORDERN

DO 910 Jol,ORDERN
910 EM(I) -EM(I) + DEL(J,i) * P(J,I)

DO 930 I.,ORDERN
DO 920 Jul ORDERN

920 FM(I) - FM(I) + EM(J) * PHI(J,I)
930 DEN DEN+EM() * DEL(I,1)

DEN = DEN r R
C
C********* ENSURE THAT THE DENOMINATOR DOES NOT GO TO ZERO *
C

IF( DEN .EQ, 0 )THEN
WRITE *2530 )KK-l
WRITE (9,2530)KK-1
NSTAGE n KK - 1
GOTO 1007

ENDIF
C

CALCULATE OPTIMAL GAINS FOR THIS STEP *
C

DO 940 I=1,ORDERN
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FTRANAI) * WF (i/DEN
170K 1I) -FT 1

1 0.0
C940 EM(I) m 0.0C

PRINT OPTIMAL GAINS FOR THIS STEP *
C

IF(SCREEN .EQ. 1)THEN
IF(ORDERN .GT. 4) THEN

WRITE(*,2540)KJCoKREAL, (FTRAN(I),In1,ORDERN)
ELSE

WRITE(*,2541)KKKREAL, (FTRAN(I),I=l,ORDERN))
ENDIF

ENDIF
IF(ORDERN .GT. 4) THEN

WRITE(9,2S40)KKKRAL, (FTRAN(I),I=l,ORDERN)
"- ELSE

WRITE(9,2S41)KK,KREAL, (FTRAN(I),IEIORDERN)
ENDIF

C
CALCULATE PSI (K,I,J)

C
DO 950 Il,ORDERN

DO 950 Jul ORDERN
950 PSI(IJ) a PHI(iJ) + DEL(I,1) * FTRAN(J)C

CALCULATE P (K,IJ)
C

DO 960 I-I,ORDERN
DO 960 J-l,ORDERN

DO 960 L-1,ORDERN
9608 G J) u: GM I J + PSI(L,I) * P(L,J)

DO 980 J'l,ORDERN
DO 970 L.l ORDERN

7(I0J) w 1,J) + J) + '*FTRAN(I) * FTRAN(J)

980 H•(,J) = 0.0
DO 990 I*1,ORDERN

DO 990 J=I,ORDERN
990 GM(IJ) = 0.0

CC***~*A*_********** DISCRETE TIME VECTOR FOR PLOTTING GAINS *******
C
CVTIME(KK) 0 KK

1000 CONTINUEC
C*************** DO YOU WANT TO SEE THE GAINS PLOTTED ? *

1001 WRITE(*,2545)
READ (;*,2190EANSWER

IF SWER.EQ. 'N' .OR.ANSWER.EQ 'n' )GOTO 1006
IF(ANSWER.EQ. 'Y'.OR.ANSWER.EQ. 'y' )GOTO 1002GOTO 1001

C
LOOP TO PLOT OUT THE GAINS

C
1002 DO 1005 GAIN * 1,ORDERN

C
SET THE GAIN PLOT TITLE

C
IF(GAIN.EQ.1 PNAME1 a 'FEEDBACK GAIN F1 FOR STATE X11
IF GAIN.EQ .2 PNAME1 m 'FEEDBACK GAIN F2 FOR STATE X21
IF GAIN.EQ .3 PNAME1 * 'FEEDBACK GAIN F3 FOR STATE X31
IF GAIN.EQ .4 PNAME1 = 'FEEDBACK GAIN F4 FOR STATE XW
IF GAIN.EQ .5 PNAME1 = 'FEEDBACK GAIN F5 FOR STATE X51
IF GAIN.E .7 PNAME1 = 'FEEDBACK GAIN F7 FOR STATE X76
IF GAIN.E .6 PNAME1 a 'FEEDBACK GAIN F6 FOR STATE X7'
IF GAIN.E1.8 PNAME1 - 'FEEDBACK GAIN F8 FOR STATE X8'
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PNAN1L n 31.
C

C~~~88GR~ HICS** *******

C
~~ SET UP INITIAL PARAMETERS FOR GAIN PLOT

BEGTIM * 0.0
FINTIM * NSTAGE
NPTS = NSTAGE
DO 1003 J * 1,

VYSS(J) a 0.!0
1003 VTIHSSJm ( (FINTIM - BEGTIM)/6.)*(J-1)

C*************GENERATE GAIN VECTOR FOR PLOTTING GAINS ******
C

-. DO 1004 KREAL * iNSTAGE
KK *NT -KREAL~
VY (KREAL) * FNETG (KK,GAIN)

C~**i'*** TEST LINE FOR SELECTING PROPER COLUMNI OF GAINS FOLLOWS
C********SEE LLS1 FOR COMPILED VERSION

C WRITE(*,*) GAINKREAL,KK,FNEG(KK,GAIN)
1004 CONTINUE

C
MAKE THE GAIN PLOT

C
IF(GAIN .EQ. 1PAUSE
CALL GRAPH (i99, ,)

C
C*************IS A HARDCOPY OF THE GAIN PLOT DESIRED ?

C
WRITE (*,2595)
REA (*,29ANSWER
If (ASWER .EQ.'Y' .OR.ANSWER.EQ.1y')

+ CALL GRAPH (I OPORT,HODEL,1)
CONTINUE

1005 CONTINUE
C

DO YOU WANT TO CHANGE NSTAGE ?
C
1006 C)H1GN = 0

WRITEr(,56
---READ (*2190) ANSWER

IF(ANSWER.EQ1 'Y' .OR.ANSWER.EQ. 'y' )THKN

GOTO 20
ELSEIF(ANSWER.EQ. 'N' .OR.ANSWER.EQ.'n' )THEN

GOTO 1007
ELSE

GOT01006
ENDIF

C
IS A PHASE PLANE DESIRED ?

C

1007 ~~~~NSWRE.Ys O.WER .Z 'y') THEN

NSTP1 a NSTAGE + 1
PHASE - 1
GOTO 1025

ENDIF
IF (ANSWER.EQ. 'N'.OR.ANSWER.EQ.'n' )GOTO 1010
GOTO 1007

C
IS A TIME RESPONSE DESIRED ?

C
1010 PHASE a 0

WRITE (*,2550)
READ (*,2190) ASWER

IF(ANSWER.ZQ. 'Y'.OR.ANSWER.EQ. 'y' )GOTO 1020
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IF(ANSWER.EQ. 'N' .OR.ANSWER.EQ. 'n' )GOTO 1510GOTO 1010
GRAPH IS TO BE A TIME RESPONSE

1020 NSTP1 * NSTAGE + 1
PLTYPE 3

C
HOW MANY SECONDS ?

C1025 WRITE(*.2160)IAREAD (*,*)ThNAL

C
INPUT DT IF NOT ALREADY KNOWN

C
IF(DTFLAG .E&. 0) THEN

WRITE(*, 2380)
READ (*,*)DT
DTFLAG 1

ENDIF
C

CALCULATE FINAL VALUE OF K
C

KFINAL : NINT(TF NAL/DT)
TFTEMP KFINAL DT
IF(TFTEHP .LT. TFINAL) THEN

KFINAL a KFINAL + 1
TFINAL a KFINAL * DT

ENDIF
C
C**************** ENSURE THAT ENOUGH GAINS ARE CALCULATED *

TO COVER THE DESIRED TIME RANGE
C

IF (GNSKED .EQ. 3) GOTO 1029
IF((KFINAL-i) .GT. NSTAGE) THEN

HAXTIN - DT * NSTAGE
WRITE(* 2561)MAXTIM
GOTO 1015

ENDIF
C

READ IN THE INITIAL STATE VECTOR
C

1029 WRITE(* 2565)
DO 1036 I1l ORDERNWRITE(4,2566)I

READ (*,*)XK0(I, i)
1030 CONTINUE

C
READ IN THE COMMAND INPUT VECTOR

C
WRITE(*,2570)S~DO 1035 Iul.ORDERN

WRITE(*,2580)I
READ (*,*)INPUT(I,1)

1035 CONTINUE
C
C********* WRITE INITIAL STATE AND COMMAND INPUT VECTOR *
C********* TO OUTPUT FILEC

WRITE(9,2030)
WRITE (9,2584
DO 1036 I. 1ORDERNWRITE(9 2585) I,XKO(I,1),INPUT(I,l)

1036 CONTINUE
C

CHOOSE EITHER STEADY STATE GAINS (1) ************
OR DYNAMIC GAINS (2) ************

OR USER DEFINED GAINS (3) *******
IF ONLY ONE CONTROL INPUT IS USED

C
1040 IF(NINPTS .EQ. THEN

IF(GAINCH .NE. 2)THEN
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WRITE (*,2590)
READ (*,2070)TEMP
SCALL COHPARE(TEMP,. 3 CODE,IGOOD)
IF(CODE.EQ.0)GOTO 1646
GNSKED " IGOOD

ELSE
GAINCH 1 1

ENDIF
ELSE

GNSKED = 3ENDIFGOTO(141 142,143) GNSKED
C******2T*O*******A* USE STEADY STATE GAINS

141 PNAME3 * 'OPTIMUM STEADY STATE GAIN SCHEDULE'
PNAM3L a 34.
GOTO 1054

USE DYNAMIC GAINS
142 PNAME3 = 'OPTIMUM DYNAMIC GAIN SCHEDULE'

PNAM3L z 29.
GOTO 1054

C*********** **** IMPLEMENT USER DEFINED FEEDBACK GAINS *
143 PNAME2 - 'Implementing'

PNAM2L - 12.
PNAME3 = 'USER DEFINED GAINS'
PNAM3L * 18.
IF( GNSKD3 .EQ. 1) GOTO 1043

C IF( FINAL .EQ. I .AND. GNSKD3 .EQ. 1 GOTO 1043
C********0 D 0 1 ,NINPUT USER DEFINED FEEDBACK GAINS

1044 DO 1045 I - 1 NINPTS
DO 1045 Y - 1,ORDERN

WRITE (*,2592) I,J
15 CREAD (*,*) USERGN(I,J)S~1045 CONTINUE

GNSKD3 = 1
C**************** ECHO USER DEFINED FEEDBACK MATRIX
C

1043 WRITE (* 2593)
DO 1046 I;l NINPTS

1046 WRITE(*,2594)(USERGN(I,J), J-1,ORDERN)C
C ~************ MODIFY THE USER DEFINED GAINS IF NEEDED *
C
1047" RITE(* 2160)

READ (c, 2070 )TEMP
CALL COMPAPE(TEMP,1 3 CODE,IGOOD)
IF(CODE.EQ.O)GOTO 1641
OPT ION a IGOOD
GOTO(1048,1044,1052)OPTION

GOTO 1047C
C********* CHANGE ONE ELEMENT OF USER DEFINED GAIN MATRIX *
C

1048 WRITE(*,2170)REf (*,*) iJIF I.,T.1 .6R. I.GT.NINPTS .OR. J.LT.1
+ .OR. J.GT.ORDERN)GOTO 1048

WRITE(*,2592)1, J
READ (*,* US R6N(I,J)
WRITE (*,2593)
DO 1049 1.1 NINPTS

1049 WRITE (*,2594 (USERGN(I,J),J41,ORDERN)
1051 WRITE (* 2180)

READ ,219 )ANSWER
IF(AMSWER.EQ.'N'.OR.ANSWER.EQ.'n')GOTO 1052
IF ANSWER. EQ.'Y'.OR.ANSWER.EQ. 'y' )GOTO 1048

1051
C
C********* WRITE USER DEFINED GAIN VECTOR TO OUTPUT FILE

1052 CONTINUE
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WRITE(9,2030)WRITE (9,2593)
DO 1053 I 1NINPTS

WRITE(9,1594) (USERGN(I,J),J=I,ORDERN)
1053 CONTINUE

WRITE(9,2030
1054 IF(FINAL.EQ.1)GOTO 1520

IF(PHASE .EQ. 0) GOTO 1050
CALCULATE STATES FOR PHASE PLANE

CALL STCALC(1,XKO,0,0)
SET UP INITIAL PARAMETERS FOR THE

PHASE PLANE PLOT
NPTS = KFINAL

C
PLOT THE PHASE PLANE

C -

CALL GRAPH(99,99,2)
C

IS A HARDCOPY OF THE PLOT DESIRED ? *
C

WRITE(*,2595)
READ (*,2190)ANSWER

IF(ANSWER.EQ.'Y'.OR.ANSWER.EQ.'y')CALL GRAPH(IOPORT,MODEL,2)
CONTINUE
GOTO 1010

C
C**************** DO YOU WANT TO SEE THE TIME RESPONSE *

TABLE ON THE SCREEN ?C
1050 WRITE(* 2591)

READ .' , 2190 )ANSWER
IF(ANSWER.EQ.'N'.OR.ANSWER.EQ.'n')SCREEN m 0
IF(ANSWER.EQ.'Y'.OR.ANSWER.EQ.'y')SCREEN = 1

C**************** SELECT HOW THE STATES ARE TO BE PLOTTED *
C

151 WRITE(* 2598)
READ ( ,207 )TEMP
CALL COMPARE(TEMP,1 3 CODE,IGOOD)
IF(CODE.EQ.0 GOTO •1'
STPLOT z IGOOD

C
LOOP TO PLOT OUT STATE TRAJECTORIES *C

DO 1500 STVAR z 1,ORDERN
C

IS THIS STATE TO BE PLOTTED ?
C

IF(STPLOT .E. 2) THEN
WRITE(*, 2199) STVAR
READ (*,2190 )ANSWER
IF(AN WER.EQ.'N' .OR.ANSWER.EQ.'n')PLOTCH , 0
IF(ANSWER.EQ. Y .OR.ANSWER.EQ. ')PLOTCH 1

ENDIF
C

PRINT HEADING FOR OUTPUT TABLE
TIME RESPONSE

C
IF(STVAR .EQ. 1) THEN

IF(SCREEN .Ef. 1)THEN
WRITE (*, 225) (HDG2(I),Iml,ORDERN)
WRITE (*,2030)

ENDIF
WRITEý (9,2525) (HDG2(I),I=1,ORDERN)
WRITE (9,2030)

ENDIF
C
C******** SKIP PLOTTING IF NO PLOT IS DESIRED
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C******** BUT MUST CALCULATE STATES ON FIRST TIME THROUGH *
C

IF(STVAR .NE.1 ) THEN
IF(STPLOT .EQ. 3) GOT01499
IF(STPLOT .EQ. 2 .AND. PLOTCH .EQ. 0) GOT01499

ENDIF
C

SET THE PLOT TITLE BASED ON THE
STATE SELECTED

C
IF STVAR.E Q1)PNAMEl = Xl TIME RE6PONSE'
IF STVAR.E .2 PNAME1 = X2 TIME RESPONSE'
IF STVAR.E .3 PNAME1 a 'X3 TIME RESPONSE'
IF STVAR.E .4 PNAME1 a IX4 TIME RESPONSE'
IF STVAR.E .5 PNAME1 = 'XS TIME RESPONSE'
IF STVAR.E. 6 PNAME1 a IX6 TIME RESPONSE'
IF STVAR.E .7 PNAMEI z 'X7 TIME RESPONSE'
IFISTVAR.E .8)PNAME1 - -X8 TIME RESPONSE'
PNAM1L = 1.

Cc**********************************,.******I.,*******w************************
C**************** CALL SUBROUTINE TO CALCULATE THE STATES *

C
CALL STCALC (0, XKO, STVAR, SCPEEN)

C
C**************** SKIP PLOTTING IF NO PLOT IS DESIRED *
C

IF(STPLOT E8 3) GOT01499
IF (STPLOT E E 2 ,AND. PLOTCH .EQ. 0) GOT01499C

PLOT 88 GRAPHICS

C
SET UP INITIAL PARAMETERS FOR THE

STATE TRAJECTORY PLOT
1055 BEGTIM * 0.0

FINTIM z TFINAL
* NPTS a KFINAL

DO 1060 J - 1,7
VYSS (J) -. INPUT(STVAR.)

--- VTIMSS(J) ;- ((FINTIM - B-GTIM)/6.)*(J-1)
1060 CONTINUE

C
PLOT THE STATE TRAJECTORY

IF(STVAR .EQ. 1) PAUSE
CALL GRAPH(39,99,3)

IS A HARDCOPY OF THE PLOT DESIRED ? *
C

WRITE(*,2595)
READ *,2190)ANSWER
CO�F�SWER.EQ.'Y'.OR.ANSWER.EQ.'y')CALL GRAPH(IOPORT ,MODEL,3)

1499 CONTINUE
1500 CONTINUE

C
C************** PRINT OUT THE AVERAGE VALUES OF ALL STATES *
C

WRITE (*, 2030)
WRITE (*,2596)
WRITE (9,2596)
DO 1505 I-1,ORDERN

WRITE(9,2597) IAVG(I) ,I,AVG2(I ,I,MXVAL(I)
WRITE (92597) IIAV (I) ,I,AVG2 (I ,IMAXVAL (I

1505 CONTINUE
WRITE(*,2030)
PAUSE
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C
IS ANOTIHER RUN OF OPTCON DESIRED ?

C

F10 NSWE .EIYI.OR.ANSWER E8 :~:ygG~O 1520

IF(ANSWER.E?. 'N'.OR.ANSWER.E n 0OT 15.30
GOTO 1510

C
PRINT MENU OF OPTIONS

C
1520 WRITE (* 26101

READ (A,2O7b )TEMP
CALL COMPARE,(TEMP,1 11,CODEIGOOD)
.F(CODE.EQ.O) GOTO l620O
'OPTION =IG09D
IF(OPTION .LE. 4 )TMEN

IF(NINPTS G T. 1)THEN

GOTO 162 0)EM
ENDIF

ENDI F
I! (OP¶CION .EQ2 .OR. OPTION .EQ.3) LOOP I
IF (OPTION .E.8) GAINCH =1
IF (OPTION HQ1: .AND. GAINCH .EQ.1) GAINCH =2
FINAL = 1
GOT0'20,230,100,310,390,560,620,1040,10,780,1510)OPTION

GO'IO 1520
C

1530 STOP

C

FORMAT STATEMENTS

C
2000 FORMAT(/ SX,'OPTCON minimizes the following cost',

+1' functlon:' //,5X 'J = MIN ( X''(N) * H * X(N) + ',
-+- Sum( X''(ks *? 0 5X(k) + U''(k)'
+.1 * R * U(k$) ', 7/5X'Ihe output ;f the programS is the',
+1' feedback gain mairix'c, F transpose (F'''1 1 X 'which;lwhen',+' multiplied by the state Vector (X1,',/,5*,y.~ald a scalar',
+- control (U).1 ,///,5X,'The following recursive equations I.,
+-'were derived using dynamic pro raming,', / 5X,

200+'starting at the terminnal time MN and working backwardss',//)
+I 1 Flý/,* -(DEL' a*P(k..1)*PHI)/(DEL'I*P(k..l)*DEL +- R)',3X,

N2) PSI~kS : PHI + DEL*F '(k)' 27X 'PSI(O);O' 8 X
+1' 3) P(k) PSI''(k)*P(k-1) P6I (kj + Q + F' ýOPR~F(k)',UX
+1(0)-H' M//

2015 FORMAT(/,WX,'You may enter a system with either single or',
+1' multple control signals. ',/,9X,' If a s~istem with only one',+-' :ontrol signal'is entered ',9x'I then the optimal gains can1
4-' be generated as described(,/ 4x,f above. These gains may then',
+- be implemented into the' /,6iI state equations to obtain a',
+-' time response of the sysiem'.'/ 9x I If you choose to enter a'&,
4-' system wit2h multiple control s'iy'ais1',/9x,' then you must'
+- enter the feedback gismanually, the user defined' ,/M,9
+-' gains option exists for the sinle control input system also.',
4-ý/f/I,1X, 1First enter the problem,
+ IX'identification ( NOT to~ exceed 20 characters)'/,
+1l0 'PROBLEM ID ........ '

2020 FORfiT AZO)
2030 FORMAT ' 1,/7060*1
2040 FORMAT ~/,//,5X,' (PTIkLi&CONTROL PROGRAM' ,/)
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2050 FORHAT(6X,/,' PROBLEM IDENTIFICATIONs',SX,A20
205S FORHAT(SX,/, Select the type of printer thai you are',

+'usn ' Answer I or 2)'/,
+10X,'12) EPSON or THINKJET ,/
+10X,1'2) LASERJET' ,//,
+1OX, 'ANSWER. . .. . ........ .'

2060 FORMAT(5X //,' Enter the ORbER of the system,(up to 8). '

2070 FOR.MAT (A25
2075 FORMAT(5XA/1 Enter the NUMBER OF CONTROL INPUTS (UP to 8)'//

+ SK,, ..N OPTIMAL GAINS will be generated if you ente~r '/,
+ SN,, more than one control input',//,
+ 5x,1' ANSWER ..... .? I )

2076 FORMAT(/,5X,' The NMER 4i CONTROL INPUTS 1 l
2077 FORMAT(/SX,' hMy changes to NUMBER OF CONTROL iNPUTS ?

+ ((Antswer y or n) ')
2080 VCRMAT(SX,' ' Enter the NUMBEofTIE INEAL ()ovr

+ which the cost function',/!,' is to be',,
+ minimized. (MUST NOT exceed 1000) ',

20,90 FORMAT(10X,&II, Does the cost functtion (J) include' te State',
+' TRAJECTORY over all stages ?',/,

+1( Answer 1 2,or 3)'/,
i-1OX,'1) YES ... Set 0Q equal to the IDENTITY Matrix .,
+IOX,'2) YES ... Each diagonal element of Q will be entered'

+10X,-13raO .... Se Q equal to the ZERO Matrix .,/

+1OX 'ANSWER . .. .. .... ')
2100 FORMAIT(9X,// ' The states are weighted equally for the',

+' TRAJECTOfX over all s~tages.')
2110 FORMAT(9X,//,,' Enter the elements of the Q matrix.',, s'!

+' (State weightihegstatei o TRAJECTORY inote inclue in your',
2120 FORMAT(9X,/, ihg statei TRAJECTORY inove anllde sn yoag '

+' cost fu~nction.')
"2130 FORMAT(6,Q'I,,,l'
2140 FORMAT(/ S The Q Matrix '/
2150 FORMAT (2X 8( fr8.3,1XJ)
2160 FORMAT,/I, SX, 'Do you wan~t to change any element of the matrix?',

+//,1O1 '1) YES...a SINGLE element.'17
+10X,12S YES ... the ENTIRE Matrix.',/
+10X,131 NO',//,
+1OX, 'ANSWER. . .. . .. . . . ..

2170 FORMAT(/,SX.' Which element of the Matrix do you want to',

+SX,' NiI is the ROW and J is the COLUMN,....enter I,J '

218a FORM~f1~TOX,//,5X,' Any other changes? (Answer y or n) ',)

2190 FORMAT (AI)_
2200 FORMAT (lOX,! Does the cost function (3) include TERMINAL',

+' States ? Answe, 2 or 3)'/
+10X,11) YES ....Set H equiai to tLe ±pkrTITY Matrix .

+10X,12) YES ... Each diagonal element 'of H -will be entered'
+' separately .',/
+10X,-13) NO .... Set H equal to the ZERO matrix .,/
+10X, 'ANSWER. . . .. .. . ... '4 , )

2210 FORMAT(9X/,1I, All states are weighted equally for the',
+' TERM INA states.')

2220 FORMAT(9X '// ' Enter the elements of the H matrix.'!
+1 Stae wlghingmatrix for TERMINAL states~'

2230 FORMAT(9X,//,' The TERMINAL states are not includ'e~d in your',
+' cost function.')

2240 FORMAT 6X,'H(',Il,','TI 1,)
2250 FORMAT(//,5X,' The H Matr~ix '1
2260 FORMAT(//,SX,' Enter the valui of the scalar R',I

+5X ' (Control input weighting factor)',//,5X,'4 W ? ',)

2270 FORi'AT(/5X,1 The scalar R a -1,F8.4)
2280 FORMAT /,5XI Any changes to R ? (Answer y or n) ',)

22.00 FORMATI///,4";x,
+' If you want to read in the A and B matrices for a CONTINUOUS',
+' TI E syster. ',/,4X,
+1 ....................... . . . . . . . . . . .Enter 0',
+//,4X,' if you want to enter the PHI and DEL matrices for a',,
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+' DISCRETE TIME system. ',/,4X,

410XX'ANSWER ...... e.....', )
2300 FORMKT(/,SX,' You will enter the A and B matrices. '/

+5X ' .ik.....Is this correct ? ' )
2310 FO iIT(/, X1 You will enter the P~ik and DEL matrices. '/

+5X .......... Is this correct ? 'I )
2320 FOUhT(SX,/ Enter the elements of the plant matrix ...k.',/)
2330 FORMIAT6X nAt 1 ''Il' , )

235FORMATRX, No changes to A or B will be allowed because,,/,
+ ~ SA yu have entered a DISCRETE TIME system',p

+ 5X Hit ENTER to continue., ......... '

23410 FORMAT(/ X' The A Matrix (Plant Matrix',/)
2350 FORM&T(5X,/1 Enter the elements of the contro/l distribution',

+ matrix...B.' /)
2360 FORMAT 6X,'B(',I1, I'I11 15 - ',)
2370 FORMAT ,5X I'The i Matrix (Control Distribution Matrix)'-,t)
2380 FORMAT f Enter the SAMPLE INTERVAL ..... DT -? ', )
2385 FORMAT SX,/,' No changes to DT will be allowed because',

+ I you have entered a DISCRETE TIME system',1
+ 5X IHit ENTER to continue............',1)

2390 FORMAT(// tX ' The SAMPLE INTERVAL DT a 1,F8.4)
2400 FQRMAT(/ ,tX,1 Any changes to the SAMPLE INTERVAL ? (Answer',

+'vo n) ',
2410 FORMIT5X//r En~ter the elements of the PHI m~atrix.',/)
2420 FORMAT(61X,' PHIII' '11,1'1, HI bal d b '2425 FORMAT (SX,' No1 changes to L7or' EL, will be alowed ecause',,

+ SX, you have entered a CONTINUOUS TIME system' I,
+ 5X'H it ENTER to continue ...........'1,)

2430 FORMAT IIX'The PHI Matrix',/)
2440 FORMAT 5X/ jnter the elements of the DEL matrix.',/)
2450 FORMAT 6X, 'D*L(' Ij11 ''1,) = 1,)
2460 FORMT // 5X ' The 6EfI Matrix' /)
2470 FORMAT 1/1,5*,' The ORDER of tA. system a ' 11)
2475 FORMT ///,SX,l The NUMBER OF CONTROL INPUTi = ':11)/2480 FORMAT Iý/I X ' The NUMBER of TIME INTERVALS m '13,/
2490 FORMAT ZX,(F .3,1 ))
2500 FORMAT /1'Minimum TERMINAL STATES Control')
2510 FORMAT MII Mini-mixation over ALL STAGES')
2515 FORMAT 1/,4X,' Do you want to see the gain) schedule table on$,

+' the Screen ?',// ,5X,' (Answer yo )1
2520 FORMAT(//,', NEG'1 REArL)',

_ 4 ' TIM~, TIME.,1 4A 5)
+ STEP',' INDEX',T16,4(A, 5X~,/

2525 FORMAT(//,' REAL',I/,
+'TIME REAL' ,T20,4(A48SX)
4'INDEX TIME':T2,4A4,8X) I

2530 FORMAT(/,' Optimum gains are reced after ',13,1 stages.',
+/,' The pormis terminated early in order to',
+1~p~r!ven'ta divisioniby zero.',/2540 IrORMAT'' ,2(14,2X) T 16y 4(78.4,2X /,'T16 '4(F8.4,2X))

2541-FORMAT( '2(14 2X)l ,T6,4(F8.4,2X)S
2545 FORMAT(/ AX ' 60 you want to see the gains plotted ?',

+//I 5X, ' Wsier y or n) ', )
2546 FOkAT(//,4X,' Do you want to change the NUMBER OF STAGES ?',

+//f 5X'Answer y or n) ', )
2547 FOkhAT'(// 4X ' Do you want to see a PHASE PLANE of X1 .vs.',

+' X2 ?'/,J/ X,'(Afiswer yor n) ', )
2550 FORMAT(// ,4k,' Do you want to see a time response of your',

+' system ?',// 5X,I(Answer y or n) '
2560 FORMAT(//4X ', for how many seconds ? '
2561 FORA(X/ The optimal gains are comp'ut~ed for only ',F8.4

+ 'secon s.',/,F Please enter a smaller number.')
2565 FORMAT(SXX/ Enter the elements of the INITIAL STATE vector '

2566 FORMAT(6X'X Il-,' (0) ",/)

2570 FORMAT 5X,/ý' n'ter theelements of the COMMAND INPUT vector-R.',/)
2584 FORMAT T5,-' N 1ý1,fIILSTATE' T35,1COMMANDINU'
2585 FORMAT IT7,11,T16,F .4, 37,F9.4)
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2590 FORMAT(OX ,//,' Select a gain schedule...( Answer 1,2,or 3 )',//,
+lOX,:l) Use STEADY STATE OPTIMAL gains over all steps .',/
+I0X,1) Use DYNAMIC gains './
+1OX,'3 Use STEADY STATE USIR DEFINED gains .',//,
+loxI O SWER ......a.... e.1 )

2591 FORMT(//,4X,' Do you wan to see the time response table on',
+' the screen ?'I /5X,' Answer y or n) ', )

2592 FORMAT(6X,/.' CONTROL GAiN I ? 1)
2593 FORMAT (//,I' The USER DEFINED GAIN Matrix?,/)
2594 FORMAT ( ' 8(F7.4,IX))
2595 FORMAT(//,4X,' Do you want a hardcop of this plot ? ',

+ (Answer y or n I
2596 FORMAT(6X,, //, , X,I A RAGE ND M VALUES OF ALL STATES',/)
2597 FORMAT 6X Average Value of X1,1I, 11 ',E12.4, ,

+ 6[,l Average Value of X',I,' 2.
+ 6X.I Maximum Value of X'I,' I

2598 FORMAT(//.K, 'Do you want to PLOT....
+//,10x ,3) ALL state trajectories.',/
S+10X,'2$ Only SELECTED state trajectories.',/
+1OX,'3) NO state trajectories,',//,
+lox 'ANSWER .. .. . . ... se s', )

2599 FORMAT(//,SX,'Do you want to see a PLOT for state X',11,' ? ',/,
+ lRx,' A(Answer y or n) ' c

2600 FORMAT(,4X,' This concludes -he optimai control program',+' (OPTCON).,//,SX,'Do you want to run the program',
+' again? (Answer y or n) ',)

2610 FORMAT(// 5X ' SELECT ONE OF THE FOLLOWING OPTIONSa',/,
+IOX,/, f i dhange the NUMBER of STAGES .................. N',/,
+10,/,' 2 Change the TERMINAL state weighting matrix ..... H',/,
+10,IO ,' 3 Change the TRAJECTORY state weighting matrix...Q',/,
+1OK,/,' 4 change the CONTROL weighting factord........... R',/,
+10X,/,' 5 Change the present A and B matrices',/,
+10X/,' 6) Change the SAMPLE INTERVAL .................... DT',/,
+lOX,/,' 7 Change the present PHI and DEL matrices',/
+lox,/,' 8 Change (or select) different FEEDBACK GAINS',/,
+10X /,' 9 "Input an entirely NEW SYSTEM!,/,
+1ox0,,' 10 NO CHANGES ... RUN',/,
+lOX,/,' 11 EXIT the program',//,
+10X,'SELECTION...(MUST be a n66er between 1 and 11 ) ...... ', )

2620 FORMAT(5X,/,' No change to this parameter is allowed because',
+ " ou have entercd a MIMO system.',',/
+ 5X,' t ENTER to continue ........... ', .

C --

END
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APPENDIX C
OPTCON SUBROUTINE LISTINGS

The following subroutines are written in MICROSOFT Fortran and are to be
used on an IBM compatible system. These subroutines are required. by the main
OPTCON program found in Appendix B and by the PLOT88 subroutine found in
Appendix D. A brief synopsis of the subroutine functions is given below.

PHIDEL - Corivert the contgiuoup time A andnB s m
to the corresponing discrete timew ana matinces.

PROD - Perforrm simple mqtrix multiplica~ion of twpo nmatrices.
Maximum dimension of the matnces is limitec to eight.

SUM . Pgrfqrm sirrple matrix qddition or subtraction of two matrices.
Maximum dimension of the matrices is limited to eight.

COMPARE - Test 4 pz~er input respo.ns to titermine ifthe response
lies witin the range oi alowable integers.

CLRSCR -A DOS command that allows the mopitor screen to be cleared
prior to the generation of a new graph.

GOTOXY - A DQS comm•ni d that position; the cursor to a designated
coordinate position on hne monitor screen.

STCALC - 4.alcuates the timeiresponse of system by iterating thediscr ete state equations,

c$NOdebugN -u LL63sub 12JULY87

C OK SDL•
C NEW output formatC for st~ates

SUBROUTINES

C
C
C

SUBROUTINE PHIDEL (T, ORDERN, M)

COMMON /BLK1/ AB,PHI DEL
INTEGER*2 ORDERN, ,J, ERFLAG
REAL*4 A(8,8) ,B(82) ,PHI(8,8) ,DEL(8,2),4- PSIT(S,8),TElM(8,8) ,NEXTRM(8,8),ARATIO(8,8),

+ TRATIO, ERRORK

ERROR z 1.E-7
ERFLAG = 0
TRATIO a T*T/2.

DO 1 I z 1,ORDERN
DO 1 J = 1,ORDERN

TERM(IJ)= A IJ) * TRATIO•,(I .EQ. ýH•EN
PSZT'(I,) = T + TERM(I,I)

154



ELSE
PSIT(IJ) *TERN(1 1 J)

ENDI F
1 CONTINUE

C
C

K *2.

C 2 K uK + 1.
TRATIO = T/K
DO 3 I a 1,ORDERN

DO 3 J n 1PORDERN
ARATIO(I,J). A(I,J) *TRATIO

3 CONTINUE
C

C qCALL PROD(TERM,ARATIO,ORDERN,ORDERN,ORDERN,NEXTRNq)-
DO 4 1 a 1,ORDERN

DO 4 J a 1 ORDERN
IF(ABO~f(j&)d .0E. ERROR) THEN

ENDIF
TERH(I,J) -NEXTRN(I,J)

4 CONTINUE
C

C IF(ERFLAG .GT. 0)THEN
DO 5 1 a 1,ORDERN

DO 5 J = 1 ORDERN

CONTINUE
C

ERFLAG a 0
GOTO 2

NOTE THE DUAL USE OF 'TERM' HERE
CALL PROD (A PSIT, ORDERN, ORDERNORDERN, TIM)
DO 6 1 a 106RDERN

DO 6 3 m 1,ORDERN
IF(I -EQ. J)THEN

PHI(I,I) * 1.+ TERII(II)
ELSE

-- PHI(I,J) = TERN(I,J)
ENDIF

6 CONTINUE
C CALL PROD(PSIT,B,ORDERN,ORDERN,MDEL)

RETURN
END

C
C
C

C
C SUBROUTINE SUH(M1,M2,OPER,N,MMSUM)

INTEGER*2 N H OPER I J
C REA.L*4 Ni(b,8),A2(8,8),MSUM.(8,8)

DO 1 1.1 N
DO i JU1,H

1 HSUN(I,J)Zo.O
C

C*************DO YOU WANT TO ADD OR SUBTRACT ?

**,A SUBTRACT
2 DO 20 I*1,

DO 20 3. ,1
SUH(I,J) * 141(1,J) - 142(I,J)
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20 CONTINUE
GOTO 40

ADD
3 DO 30 1 a 1,N

DO 30 J a 1,M

30 CONTINUE NSUM(I,J) * M(I,J) + M2(I,J)
40 RETURN

END
C
C
C

C
C SUBROUTINE PROD (M1,M2,ORDERNM,L,MPROD)

.INTEOER*2 ORDERN M,L IJ K-
REAL*4 Ml1(8,8S.,M2t8f'8S,MPROD(8,8)
DO 1 Iul,ORDEfl

1 MPROD (I1J).odL
DO 2 Iul1,)'ORDERN

DO 2 J=1lL
DO 2 K a 1,M1

2 MPROD(l IJ) a MPROD(I,J) + Ml(I,K) *M2(K,J)
RET URN
END

C
C
C

C
CSUBROUTINE COMPARE (TEP, VALMIN, VALMAX, CODE, IGOOD)

INTEGER*2 IGOOD ,C EVALNAX ,VALMIN
CHARACTER*2 TEMP

C
IGOOD * -1
IF TEHP.E *'O' ) IGOODSO
IF EMP.E .'2' IGOOD=2
IF TEMP.E 13 )GOODu3
IF TEMP.EQ*'4' GOU

IFTEH .E 5' ) IGOOD.5
IF TEMP.E Q.1) IGOOD=5
IF TEMP.E Q'76) 1000Dm'
IF TEMP.E A11 IGOOD=7
IF TEMP.E .191 IGOOD-9
IF TEHP.E .:10 ) IGOODlOI
IF TEMP.E .11')1000Dol
IF(IGOOD.E .1 .OR. IGQOD.GT.VALMAX .OR. IGOOD.LT.VALNIN) THEN

ELSE
CODE m 1

ENDIF
RETURN
END

C
C
C

C
SUBROUTINE CLRSCR

C
INTEGER*2 IC(4)
CHARACTER*1 Cl Cl ,C3 C4
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C ***.Writs %ca, a Code toDisplay
*WRITK(',1j Cl,C2 C3 C4

1 FORHAT(lX,4A1)
RETURN
END

C
C
C

C
CSUBROUTINE GOTOXY(ROW, COLU1MI)

C Position Cursor by Row,Column
C

INTEGER*2 IC(4) ROW COLUMN L
-CHARACTER*l1 C 2 ,C6, C8,t5
CHARACTER*S BLCFF
+EQUIVALENCE ~C14dC(1))ý (C2,IC(2)),(CS,IC(3)),(CS,IC(4)),

C DATA IC16- - 1645B,16#33,16*66/

LulOOOO4.100*ROW+COLUHN
C
C Write Escap Codes to a Character Buffer

2WRITE(CBFF,2) L
2FORMAT(I5)

C
C *** Write Escape Codes to Display

WRITE(*,3) C1,C2,LC(2), LC(3) ,CS ,LC(4),LC(5),C8
3 FORMAT(lX,8A1,)

RETURN
END

C
C
C

C
CSUBROUTINE STCALC (PHASE, XRO,ST.AR ,SCRBEN)

C CALCULATE THE STATES ITERATIVELY "
C X(k+l) n PHI * X(k) + DEL * U(k) *
C -

COMMON /BLKl/ A BfPHI DEL
COMMON /BLK3/ V1+IM V1fIHSS VY VYSS VXXSS,VXYSS
COMMON /BLK4/ JCFINAI. NSTAG*,NiTP1,6RDERN GNSKED,USERGN,FNEG,

+ INPUT 6T AVG AVG2 MAXVAL NINPTS
INTEGER*2 K!IN~i ,NbTAGk ,NST~l,ORDEIN ,GNSKED, STVAR, SCREEN,

+ PHASE M OPER NINPTS,NINPP1
REAL*4 88 (8 H 88 D TMaO

+ DT PH (~ IN~ 06ELRO 0008 ,I'grua8,1)

+ DELN( % 1) AV(),V2(8),STSUH,S NUM2,A i()
+. USERGN &(S,8

C
RE-INITIALIZE THE STATE VECTOR

C
DO 5 J * 1ORDERN

5 CONTINU~E'~-XOJl
C

RE-INITIALIZE THE AVERAGING SUMS
AND MAXIMUM VALUE STATE VECTOR

C
STSUH 0.0
STSUM2 *0.0
MAXVAL(STVAR) -0.0

C
C************* LOOP TO ITERATIVELY CALCULATE THE STATES
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C
DO 70 K = 1,KFINAL

KPRIME = NSTP1 - K
TIME = K * DT
IF (PHASE .EQ. 1) THEN

VY(K) = XK(2,1)
VTIME(K) = XK(1,1)

ELSE
VY(K) = XK(STVAR,l)
VTIME(K) = TIME

* SUM FOR COMPUTING AVERAGE STATE VALUES *
STSUM = STSUM + XK(STVAR,1)
STSUM2 = STSUM2 + (XK(STVAR,l) * XK(STVAR,1))

* * * SEARCH FOR MAXIMUM VALUE OF THE STATE
IF( ABS( XK(STVAR,1) ) .GT. ABS( MAXVAL(STVAR) ))

+ MAXVAL(STVAR) = XK(STVAR,1)
"ENDIF

C
C********* LOOP TO SELECT THE PROPER FEEDBACK GAIN ************

ELEMENTS FOR THIS TIME STEP
C

DO 40 J = 1,ORDERN
GOTO (10,20,35)GNSKED

USE STEADY STATE GAINS (GNSKED=1)************
10 ROWF(1,J) = FNEG(NSTAGE,J)

GOTO 30
USE DYNAMIC GAINS (GNSKED=2)************

20 IF(K ,LE. NSTAGE) THEN
ROWF(1,J) = FNEG(KPRIME,J)ELSE
ROWF(1,J) = 0.0

ENDIF
30 CONTINUE

USER DEFINED GAINS (GNSKED=3)************.
35 CONTINUE
40 CONTINUEC

PAD THE DEL AND ROWF MATRICES
WITH ZEROS

C**************** IN ORDER TO MULTIPLY PROPERLY IN PROD *
C

NINPP1 = NINPTS + 1
DO 50 I = 1,ORDERN

DO 50 J = NINPP1,ORDERNDEL(I,J) = 0.0
ROWF(J,I) = 0.0

50 CONTINUE
C

C************** CALCULATE THE NEXT STATE X~kl) ********

C

IF(GNSKED .NE. 3) THEN
* "USING OPTIMAL GAIN SCHEDULE

CALL PROD (DEL, ROWF, ORDERN, ORDERN, ORDERN, DELROW)
ELSE

USING USER DEFINED GAIN MATRIX
CALL PROD (DEL,USERGN, ORDERN, ORDERN, ORDERN, DELROW)

ENDIF
OPER = 1
CALL SUM(PHI,DELROW,OPER,ORDERN, ORDERN,PHIEQ)
CALL PROD (PHIEQ,XK,ORDERN,ORDERN,M, PHIEQX)
CALL PROD (DELROW, INPUT,ORDERN,ORDERN,M,DELINP)
OPER = 0
CALL SUM(PHIEQX DELINP OPER ORDERN M XKPI)

C
NEXT 29 LINES ARE TEST LINES TO VERIFY *

PROPER CALCULATION OF THE STATES
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FOR A SECOND ORDER OPTIMAL EXAMPLE
C
C WRITE (* 2614) K
C WRITE (*,2615)
C DO 10411'1 ORDERN
C WRITE(*,2620)DEL(I,1),ROWF(l,I), (DELROW(I,J),J=1,ORDERN)
C1041 CONTINUE
C WRITE(*,2625)
C DO 104211 ORDERN
C WRITE(*,2 30)(PHI(I J)Ja1 ORDERNI,(DELROW(I J,),C + Ja1OAEA)IPHIEQ I ,),is-. 0~E
C1042 CONTINUE
C WRITE (*,2635)C DO 1043 I = ORDERN
C WRITE(*,264O) (PHIEQ(I,J) ,J=In,ORDERN) ,XK(I,l) ,PHIEQX(I,1)
C1043 .. CONTINUE
C WRITE *,2645)CDO 10441- ORDERN
C WRITE(*,2650)PHIEQX(I,1),DELINP(I,l),XKP1(1,1)
C1044 CONTINUE
C2614 FORMAT /,' TIME STEP -'13,1
C2615 FORMAT T T0 ' DELI T221 'ROWF +RWN',T44,'DELROWI)
C2620 FORMAT Tg F16.4 T20:F1O.4,T35 2(F1O.4))C2625 FORMAT /,+ 0 1 PHI' T38 I DELROW 'T6'PHIEQ '
C2630 FORMAT 2(Fl0.4),8X,i(Fl6.4),8X, (16 ;41
C2635 FORMAT / T10,' PHIEQ' T33 I '9F 1%,lPHIEQXl)
C2640 FORMAT 2QF10.4) 8xK F6.4 AX F10 4)
C2645 FORMAT /T10' fHI~x',16x,l DELINP ',12X,l XKP1 ')
C2650 FOMTT 3(hO

NEXT 24 LINES ARE TEST LINES TO VERIFY
PROPER CALCULATION OF THE STATES

C********* FOR A FOURTH ORDER USER DEF NER*GA NS EXAMPLE

C
C WRITE(264 K
C WRITE (9,2615)
C DO 1041 I a ORDERN
C WUtTE(9,2620)(PHI(I,J),Ju1,ORDERN),(DEL(I,J),J=1,NINPTS)
C1041 CONTINUE
C WRITE (9,2625)
C DO 1042 I = ORDERN
C WRITE(9,2630)(DELROW( I,J) ,Jm,ORDERN) ,DELINP(I,l),
C + (USERGN J,I) ,J.1 ,NINPTS)
C1042 CONTINUE
C WRITE (9,2635)
C DO1043 1-= ORDERN
C WRITE(9,2940) (PHIEQ( %J) ,J.ORDERN),PHIEQX(I,1),
C + XKP1( i,,KIi
C1043 CONTINUE
C2614 FORMT /,' TIME STEP = 1,13,/)
C2615 FORMAT T/ T1O PHI' T57 'DELI)
C2620 FORMAT T6 4 (F7.4j2Xý T56 2(F7.4j 2K))
C2625 FORMAT fl 10 D LRWO' H~2 'DEL NP T67 ,'USERGN')
C26530 FORMAT i46#r7.4,2X TtO X1.4j 6 3 *KPB
C2635 FORMAT flI4I Ii '' Th I PH ±E2X ' 63lK ,T74, 'XK')
C2640 FORMAT1 6,2Xh. ,% 5O,Pf7.4 T 0 0r.4:T70,F7.4)
C

PRINT OUT THE STATE TABLE
ONLY ONCE

C
IF(PHASE N.E.l1 THEN

IF VR .EQ 1) THEN
IF?(C [y

'ORDERNEQ 1.) THEN
OID~ RNGT. 4 ) THEN
WRITE(*,2670) K,TIME,(XK(I,1),t1l,ORDERN)

ELSE
WRITE(*,2671)K,TIME, (XK(l.1) ,1-1,ORDERN)

ENDIF
ENDIF
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IF(ORDERN .GT. 4 )THEN
WRITE(9,2670) K,TIHI.(XK(I,1),Iu1,ORDERN)

ELSE
WRITE(9,2671)K,TUIE, (XK(I,i) ,Ial,ORDERN)

ENDIF
2670 FORMAT(' '14 T7,F8.4,Tl5,4(Flo 4 2X) /,TiS,4(FlO.4,2X))

2671 ~FORM4AT( I,14T7,F8.4,TlS,4(F10:4 2X)
ENDIF

ENDIF
C

GET READY FOR THE NEXT ITERATION
C

DO 60 I m 1 ORDERN
XK(I,1) m XKP1(I,1)

60 CONTINUE
70 CONTINUE

C
CALCULATE THE AVERAGE OF THE STATE
BEING CONSIDERED ON THIS CALL

C
IF(STVAR .NE. 0)TE

AVG (STVAR) * STSUN/KFINAL
AVGZ (STVAft) *STSUM2/KFINAL

ENDIF
RETURN
END
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APPENDIX D

PLOT88 GRAPHICS SUBROUTINE LISTING

The following code is written in MICROSOFT Fortran and is intended to be
used on an IBM compatible system. This graphics subroutine must be linked with the
two program segments found in Appendices B and C. In addition, the Fortran, Math
and PLOT88 libraries must be linked.

$NOdebugC LL63GR OK SDL
C 12 JULY 87

SUBROUTINES
C
C
CC_C SUBRO11TINE GRAPH (IOPORT, MODEL, PLTYPE)

IMPLICIT REAL*4 (A-Z)
COMMON /BLK2/ BEGTIM FINTIM,NPTS,

+ XNAML, t4AML,PNAMlL, PNAM2L,PNAM3L
COMMON /BLK3/ VTIME ,VTIMSS VY VYSS VXXSS VXYSS
COMMON /BLKS/ XNAME YNAMEkiNAkEi PNAME2,kNANE3
INTEGEF*2 NPTS fOPORT MODEL, *NAML YNAML,

+ NC 1,NHA2, NCHAR3,PLfTPE ,J
REAL*4 VTIME(1002), Vi(1OQ2) ,XAXL,YAXLiVTIMSS(9),VYSS(9),

+ XORGN,YORGN, vXXSS (9) ,VxTSS(9),
+ XLO XHI, YLO, YHI,INCRMT

CHARACTER*30 XR9E, YNAME'
CHARACTER*51 PNAMEI,PNAME2• q C
IF(MODEL .EQ. 99)THEN

SEND TO MONITOR
CALL CLRSCR
XORGh = 1.50
YORGN - 0.80

ELSE
SEND TO PLOTTER

XORGN a 3.20
YORGN = 1.76

ENDIFC
10 CALL GOTOXY(10,25)

WRITE(*,*) 'Calculating Plotting Data'C

c*i E 1 PLOTTING THE GAINS
XAXL 0 5.0
XOFF a 0.25
XNAME a 'DISCRETE REAL TIME INDEX (k)'
XNAML - -28
YNAME a 'GAIN TRAJECTORY'
YNAML a 15
PNAME3 = ' I
PNAM3L = 1

*E*TSEIHEN PLOTTING THE PHASE PLANE

- 161



XAXL a4.0
XOFF = 0.29
XNAME m 'XI. STATE'
XNAML - -8
YNAME = 'X2 STATE'
YNAML = 8
PNAME1 a'X1 vs. X2 PHASE PLANE'
PNAM1L = 21
XORGN = XORGN + 0.65

ELSE
PLOTTING THE TIME RESPONSE

XAXL = 5.0
XOFF =0.25
IGIAME ='REAL TIME (sec)'
XNAML - -15
YNAME - 'STATE TRAJECTORY'
YNAML - 16

ENDIF

YAXL = 4.0
ASPRAT =0.70
CHARHT = 0.23
CHRHT2 = 0.8 * CHARHT

PLOT TITLE LOCATIONS
PTX1 = XOFF + (XAXL-PNAH1L*ASPRAT*CHARHT)/2.
PTY1 = 4.74
PTX2 = XOFF +(XAXL-PNAM2L*ASPRAT*CHRHT2)/2.
PTY2 - 4.42
PTX3 = XOFF + (XAXL-PNAM3L*ASPRAT*CHRHT2)/2.
PTY3 = 4.1
NCHAR1 =ifix (PNAZI1L)
NCHAR2 =if ix(PNAM2L)

C NCHAR3 -ifix(?'NAM3L)

CALL PLOTS (0 IOPORT,MODEL)
CALL FACTOR( i.oo

C CALL ASPECT (ASPRAT)

CALL SCALE(VYYAXL,NFTS,1)
IF (PLTYPE .EQ. 1) THEN

C This scaling applies when the X axis represents DISCRETE TIME
CALL SCALE (VTIME XAXL NPTS 1~
CALL STAXIS (.1 .is .ko,.i o6 ,O

ELSEIF (PLTYPE .EQ. 2) THEN
C This scaling a~ lies when the X axis represents a STATE

XLO a VTIME 1
XHI = VTIHE 1YLO z LIT1
Do 15 J-2 T

IF ( 'IMME J .GT. XGII )H =~l VTIMEJ
IF(VTIE J LT. XLO )XLO *VTIHE

IF ( VY(J) LT. YLO )YLO = VY J)
i5 CONTINUE

XRANGE a XUiI - XLO
YRANGE = YHI - YLO
IF( YRANGE .LT. XRANGE )THEN

INCRMT = XRANGE/AX
VTY NT+1) : YLO - Y X*INCRMT - YRANGE)/2.)

ILSEC XRANGE/ (XAXL-1.)
INCR YRANGE/YAXL
VTIMjE(NPTS+1) -XLO : (AL*INCRMT - XRANGE)/2.)
MY UNpS+1) = YLO - ICWRT/2.
IN RMT a YRANGE/(YAXL-l.)

EUDIF
VY (NPTS+2) a INCRMT
VT IME(NPTS+2) = INCRMiT
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CALL STAXIS(.15,.20,.12,.080,2)
ELSE

C This scaling alpplies when the X axis represents REAL TIME
VTIME (NPTS+1)= BEGTIM
VTIME (VTXT NPT -VTIHE(NPTS+1))/XAXL
CALL STAXIS(.15.20,.12,.080,2)

2NDIF
C

FIRSTX =VTIME (NPTS+l)
DELTAX = VTIME (NPTS+2)
LASIX = FIRSTX + DELTAX*X.%L
FIRSTY =VY (NPTS+l)
DELTAY = VY (NPTS+2)
LASTY aFIRSTY + DELTAY*YAXL
IF(PLTYPE .EQ. 1 -OR. PLTYPE .EQ. 3) THEN

VTISS(8 8 BEGTIM
VTIMSS(9) = (FINTIM - BEGTIM)/XAXL

ELSE
DO 20 J =1,7

VYSS (J) = 0.0
VTIMSS5J z ((%LASTX - FIRSTX)/6.) *(J-1) )+ FIRSTX

VXYSS i) = (((LASTY - FIRSTY)/6.) *(J-1) )+ FIRSTY
20 CONTINUE

VTIMSgjf (8 IRSTX
VTIMSS 9 DELTAX
VXXISS8 FIRSTX
VXXSS 9) DELTAX
VXYSS 8)E FIRSTY

VXYSS19) DELTAY
ENDIF
VYSSý 8 FIRSTY
VYSS (9) DELTAY
CALL PLOT (XORGN YORGN,-13)
CALL PLOT (xAxL,6.0,3 )
CALL PLOT (XAXL, YAXL
CALL PLOT (0.00 YM:XL,2
CALL AXIS 6.6 6, R NM ,XNAIIL XAXL,0.,FIRSTXJ,DELTAX)
CALL STAX1S(.i5;.iO-,.12 .080 ~
CALL AXISS(0 0. YNAI4E.YNAZIL {AL,9go. .FIRST DELTAY)
CALL SYMB L (kTXiPTY1,CHARH±IPNAME1l,6.,NCHAi1)
CALL SYMBOL (PTXZ, PTY2, CHRHT2 ,PNAHE2, 0. ,NCHAR2)

-CALL SYMBOL(PTX3DPTY3PCHRHT2,PNAME3,O.,NCHAR3)
C

CALL LINE (VTIME,VY,NPTS,1,O,O)
IF( FIRSTY .LE.O )THEN

IF( LASTY.GE.0 )CALL CURVE(VTIMSS,V'ISS,7,-O.1)
ENDIF
IF(PLTYPE .9Q. 2) THEN

IF( FIRSTX,.LE .0 )THEN
IF( LASTX.GE.O )CALL CURVE(VXXSS,VXYSS,7,-O.1)

ENDIF
ENDIF

C CALL PLOT(0.,0.,999)

RETURN
END
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